Investigating the effect of lanthanide radius and diamagnetic linkers on the framework of metallacrown complexes.

Dalton Trans

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, 252000 Liaocheng, People's Republic of China.

Published: February 2020

By changing the stoichiometric ratios, the one-pot reaction of the glycinehydroxamic acid (H2glyha) ligand with copper(ii) and lanthanide(iii) salts in the presence of diamagnetic [Na2{Fe(CN)5(NO)}] led to two series of isostructural complexes, which can be designated as heterotrimetallic dimeric clusters [{LnCu5(glyha)5}{Fe(CN)5(NO)}(H2O)4]2·xNO3·yH2O (x = 2, y = 11 for La (1), x = 2, y = 11 for Pr (2), and x = 2, y = 11 for Nd (3)) and heterotetrametallic coordination polymers [Na{LnCu5(glyha)5}{Fe(CN)5(NO)}2(H2O)x·yH2O]n (x = 6, y = 4 for Sm (4), x = 6, y = 0 for Gd (5), x = 6, y = 4 for Tb (6), x = 5, y = 5 Dy (7), and x = 6, y = 4 for Ho (8)). Each molecular structure contains LnIII[15-metallacrown-5] nodes and diamagnetic [Fe(CN)5(NO)]2- linkers. The resulting products demonstrate diversified structural frameworks due to the radius effect of LnIII ions and different bridging fashions of diamagnetic [Fe(CN)5(NO)]2- linkers. An analysis of magnetic susceptibilities reveals that 7 exhibits ferromagnetic coupling between CuII and DyIII ions and field-induced SMM behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt04383gDOI Listing

Publication Analysis

Top Keywords

diamagnetic [fecn5no]2-
8
[fecn5no]2- linkers
8
investigating lanthanide
4
lanthanide radius
4
diamagnetic
4
radius diamagnetic
4
diamagnetic linkers
4
linkers framework
4
framework metallacrown
4
metallacrown complexes
4

Similar Publications

Article Synopsis
  • The study focuses on synthesizing and analyzing the structure of a compound featuring imidazolium ions as countercations, based on previously known crystal structures.
  • Various techniques, including thermal stability assessments and spectral analysis, reveal differences in how the pentadentate chelator µ-EDTA interacts with copper centers in two different compounds.
  • The findings highlight the impact of imidazolium ions on the magnetic properties and stability of the structures, supported by DFT calculations showing significant hydrogen bonding and stacking interactions within the trinuclear anion.
View Article and Find Full Text PDF

The potential to introduce tunable electrical conductivity and molecular magnetism through carrier doping in metal-organic coordination polymers is particularly promising for nanoelectronics applications. Precise control of the doping level is essential for determining the electronic and magnetic properties. In this study, we present a series of one-dimensional coordination polymers, {(HNEt)[CuCo(L)]} (HNEt = triethylammonium, L = 1,2,4,5-tetrakis(methanesulfonamido)benzene), doped with diamagnetic Cu carriers.

View Article and Find Full Text PDF

Mn coordinated by orthophosphate (Pi), metabolites, or peptides acts as a superoxide dismutase (SOD), and these Mn antioxidant complexes are universally accumulated in extremely radiation-resistant cell types across the tree of life. This behavior prompted design of decapeptide DP1 (DEHGTAVMLK) as a Mn ligand, and development of a highly potent Mn-antioxidant (MDP) containing [Pi] = 25 mM, and [DP1] = 3 mM, the ratio found in the radioresistant bacterium , with [Mn] = 1 mM. MDP is an exceptional antioxidant, both in vitro and in vivo, and has reinvigorated the development of radiation-inactivated whole-cell vaccines.

View Article and Find Full Text PDF

Interlayer Ions Control Spin Canting in Low-Dimensional Manganese Trimers in 12R-BaMnO ( = Ce, Pr) Layered Perovskites.

Inorg Chem

December 2024

Materials, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

To synthetically target a specific material with select performance, the underlying relationship between structure and function must be understood. For targeting magnetic properties, such understanding is underdeveloped for a relatively new class of layered hexagonal perovskites, the 12R-BaMnO family. Here, we perform a detailed magnetostructural study of the layered hexagonal perovskite materials 12R-BaMnO, where = diamagnetic Ce or paramagnetic ≈ 1/2 Pr.

View Article and Find Full Text PDF

Radical lanthanide complexes are appealing platforms to investigate the possibility to engineer relevant magnetic couplings between the two magnetic centers by exploiting the strongly donating magnetic orbitals of the radical. In this paper, we report a spectroscopic and magnetic study on [LnRad(NO)], where Ln = Eu or Lu and Rad is the tridentate tripodal nitroxyl radical 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl. A thorough magnetic investigation by Electron Paramagnetic Resonance (EPR) spectroscopy and magnetometry, fully supported by calculations, allowed us to unravel an unprecedentedly large antiferromagnetic coupling between the Eu and the radical ( = +19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!