By changing the stoichiometric ratios, the one-pot reaction of the glycinehydroxamic acid (H2glyha) ligand with copper(ii) and lanthanide(iii) salts in the presence of diamagnetic [Na2{Fe(CN)5(NO)}] led to two series of isostructural complexes, which can be designated as heterotrimetallic dimeric clusters [{LnCu5(glyha)5}{Fe(CN)5(NO)}(H2O)4]2·xNO3·yH2O (x = 2, y = 11 for La (1), x = 2, y = 11 for Pr (2), and x = 2, y = 11 for Nd (3)) and heterotetrametallic coordination polymers [Na{LnCu5(glyha)5}{Fe(CN)5(NO)}2(H2O)x·yH2O]n (x = 6, y = 4 for Sm (4), x = 6, y = 0 for Gd (5), x = 6, y = 4 for Tb (6), x = 5, y = 5 Dy (7), and x = 6, y = 4 for Ho (8)). Each molecular structure contains LnIII[15-metallacrown-5] nodes and diamagnetic [Fe(CN)5(NO)]2- linkers. The resulting products demonstrate diversified structural frameworks due to the radius effect of LnIII ions and different bridging fashions of diamagnetic [Fe(CN)5(NO)]2- linkers. An analysis of magnetic susceptibilities reveals that 7 exhibits ferromagnetic coupling between CuII and DyIII ions and field-induced SMM behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt04383g | DOI Listing |
Int J Mol Sci
December 2024
Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
J Am Chem Soc
December 2024
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
The potential to introduce tunable electrical conductivity and molecular magnetism through carrier doping in metal-organic coordination polymers is particularly promising for nanoelectronics applications. Precise control of the doping level is essential for determining the electronic and magnetic properties. In this study, we present a series of one-dimensional coordination polymers, {(HNEt)[CuCo(L)]} (HNEt = triethylammonium, L = 1,2,4,5-tetrakis(methanesulfonamido)benzene), doped with diamagnetic Cu carriers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Chemistry, Northwestern University, Evanston, IL 60208.
Mn coordinated by orthophosphate (Pi), metabolites, or peptides acts as a superoxide dismutase (SOD), and these Mn antioxidant complexes are universally accumulated in extremely radiation-resistant cell types across the tree of life. This behavior prompted design of decapeptide DP1 (DEHGTAVMLK) as a Mn ligand, and development of a highly potent Mn-antioxidant (MDP) containing [Pi] = 25 mM, and [DP1] = 3 mM, the ratio found in the radioresistant bacterium , with [Mn] = 1 mM. MDP is an exceptional antioxidant, both in vitro and in vivo, and has reinvigorated the development of radiation-inactivated whole-cell vaccines.
View Article and Find Full Text PDFInorg Chem
December 2024
Materials, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
To synthetically target a specific material with select performance, the underlying relationship between structure and function must be understood. For targeting magnetic properties, such understanding is underdeveloped for a relatively new class of layered hexagonal perovskites, the 12R-BaMnO family. Here, we perform a detailed magnetostructural study of the layered hexagonal perovskite materials 12R-BaMnO, where = diamagnetic Ce or paramagnetic ≈ 1/2 Pr.
View Article and Find Full Text PDFChem Sci
December 2024
Nikolayev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences 630090 Novosibirsk Russia
Radical lanthanide complexes are appealing platforms to investigate the possibility to engineer relevant magnetic couplings between the two magnetic centers by exploiting the strongly donating magnetic orbitals of the radical. In this paper, we report a spectroscopic and magnetic study on [LnRad(NO)], where Ln = Eu or Lu and Rad is the tridentate tripodal nitroxyl radical 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl. A thorough magnetic investigation by Electron Paramagnetic Resonance (EPR) spectroscopy and magnetometry, fully supported by calculations, allowed us to unravel an unprecedentedly large antiferromagnetic coupling between the Eu and the radical ( = +19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!