Improving the quality of vegetable foodstuffs by microwave inactivation.

Food Sci Biotechnol

2Department of Food Science and Engineering, Ewha Womans University, Seoul, 03766 Korea.

Published: January 2020

With the aim of improving the loss of quality in retorted vegetables, experiments on pretreatment inactivation using microwaves were carried out to allow the heating intensity to be reduced during retorting. Microwave heating reduced the bacteria level by 10 CFU/g, and was a more effective method considering the short processing time of 3 min and the required energy being 70-80% of that when using steam. The inactivation effect was due to dielectric heat generation by the high-frequency microwaves. The inactivation effect for heat-resistant was indicated by a reduction of 10 CFU/g after 3 min of microwave heating. The total bacteria counts for peeled potato and spicy sauce with vegetables decreased by 3-4 log CFU/g after 3 min using microwaves, and heat-resistant microorganisms were reduced by 2 log CFU/g. Combining microwave heating and mild retorting is expected to produce higher quality vegetable foodstuffs compared to conventional retorting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949337PMC
http://dx.doi.org/10.1007/s10068-019-00652-2DOI Listing

Publication Analysis

Top Keywords

microwave heating
12
quality vegetable
8
vegetable foodstuffs
8
cfu/g 3 min
8
log cfu/g
8
improving quality
4
microwave
4
foodstuffs microwave
4
inactivation
4
microwave inactivation
4

Similar Publications

Introduction: The anti-cancer properties of zinc oxide-doped carbon dots (CDs/ZnO) in inhibiting triple-negative breast cancer (TNBC) progression merit more investigation.

Methods: With citric acid as the carbon source, urea applied as the nitrogen source, and zinc oxide (ZnO) used as a reactive dopant, CDs/ZnO were synthesized by microwave heating in the current study, followed by the characterization and biocompatibility assessments. Subsequently, the anti-cancer capabilities of CDs/ZnO against TNBC progression were evaluated by various biochemical and molecular techniques, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, metabolome, and transcriptome assays of MDA-MB-231 cells.

View Article and Find Full Text PDF

We herein report a microwave-assisted Buchwald-Hartwig double amination reaction to synthesize potential thermally activated delayed fluorescence compounds, forming C(sp)-N bonds between donor and acceptor units. Our approach reduces reaction times from 24 h to 10-30 min and achieves moderate to excellent yields, outperforming conventional heating methods. The method is compatible with various aryl bromides and secondary amines, including phenoxazine, phenothiazine, acridine, and carbazole.

View Article and Find Full Text PDF

Purpose: The emulsification of silicone oil (SO) remains poorly understood. In the present study, we investigated the physical properties of unused pharmaceutical SO samples under various conditions. Moreover, clinical correlations with the patients' SO samples were assessed.

View Article and Find Full Text PDF

Background: Selenium nanoparticles (SeNPs) are highly sought after in diverse industries for their distinct properties and advantages. SeNPs can be synthesized via several methods, including the use of microwave, bain-marie, autoclave, and heater.

Objective: The objective is to optimize the SeNP synthesis formulation, emphasizing stability, concentration, particle size minimization, and uniformity using central composite design.

View Article and Find Full Text PDF

The effects of 5.8-GHz microwave (MW) irradiation on the synthesis of mesoporous selenium nanoparticles (mSeNPs) in aqueous medium by reduction of selenite ions with ascorbic acid, using zinc nanoparticles as a hard template and cetyltrimethylammonium bromide (CTAB) as a micellar template, are examined for the first time with a particular emphasis on MW-particle interactions and the NPs morphology. This MW-assisted synthesis is compared to 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!