A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Response of bacterial communities from Kongsfjorden (Svalbard, Arctic Ocean) to macroalgal polysaccharide amendments. | LitMetric

Macroalgae are abundant in coastal Arctic habitats and contain a large amount of polysaccharides. Increased macroalgal productivity due to warmer temperatures and reduced sea-ice cover contribute a significant amount of polysaccharide-rich detritus in the region. To study bacterial degradation of macroalgal polysaccharides and their potential impact on biogeochemical processes we studied the response of bacterial communities from Kongsfjorden, Svalbard (Arctic Ocean) to alginate (AL) and agarose (AG) amendments, using an ex-situ microcosm experiment. Our results show that bacterial communities responded to the increased availability of macroalgal polysaccharides and community shift was congruent with a significant decline in nutrient concentrations. Initially-rare bacterial taxa affiliated with Gammaproteobacteria and Bacteroidia responded to the polysaccharide addition. Each polysaccharide addition incited the growth of certain distinct bacteria taxa. Compared to the un-amended control microcosms (CM), Polaribacter, Colwellia, Pseudoalteromonas, and unclassified Gammaproteobacteria responded to AL addition, whereas Paraglaciecola, Lentimonas, Colwellia, unclassified Gammaproteobacteria, unclassified Alteromonadales, and unclassified Alteromonadaceae responded to the AG addition. These results suggest that polysaccharides shift bacterial community composition towards copiotrophic bacterial taxa, with implications for carbon and nutrient cycling in coastal Svalbard.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2020.104874DOI Listing

Publication Analysis

Top Keywords

bacterial communities
12
response bacterial
8
communities kongsfjorden
8
kongsfjorden svalbard
8
svalbard arctic
8
arctic ocean
8
macroalgal polysaccharides
8
bacterial taxa
8
polysaccharide addition
8
unclassified gammaproteobacteria
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!