The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150-200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289721PMC
http://dx.doi.org/10.1093/jxb/eraa039DOI Listing

Publication Analysis

Top Keywords

endomembrane system
12
extracellular matrix
8
penium margaritaceum
8
golgi body
8
endomembrane
4
endomembrane architecture
4
architecture dynamics
4
dynamics secretion
4
secretion extracellular
4
matrix unicellular
4

Similar Publications

Protein Structural Modeling and Transport Thermodynamics Reveal That Plant Cation-Chloride Cotransporters Mediate Potassium-Chloride Symport.

Int J Mol Sci

December 2024

School of Agriculture, Food and Wine, Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Waite Campus Precinct, Glen Osmond, Adelaide, SA 5064, Australia.

Plant cation-chloride cotransporters (CCCs) are proposed to be Na-K-2Cl transporting membrane proteins, although evolutionarily, they associate more closely with K-Cl cotransporters (KCCs). Here, we investigated grapevine ( L.) VvCCC using 3D protein modeling, bioinformatics, and electrophysiology with a heterologously expressed protein.

View Article and Find Full Text PDF

Direct lipid interactions control SARS-CoV-2 M protein conformational dynamics and virus assembly.

bioRxiv

November 2024

Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907.

Article Synopsis
  • M is a crucial structural protein in coronaviruses, specifically SARS-CoV-2, playing a key role in forming infectious virus particles and existing in two conformational states.
  • The study identifies a specific interaction between the M protein and a type of lipid (ceramide-1-phosphate) that influences M's structure and its ability to facilitate virus assembly.
  • Disrupting this lipid-protein interaction impacts M's localization and its interactions with other viral proteins, ultimately hindering the virus's ability to enter host cells.
View Article and Find Full Text PDF
Article Synopsis
  • Cannabis is economically important but faces weed management challenges due to limited herbicide options, leading researchers to explore the potential of Cytochrome P450 (CYP) enzymes in herbicide metabolism.
  • In this study, 225 CYP proteins from the Cannabis genome were identified and categorized into 9 clans and 47 families, with significant findings on their roles in detoxifying herbicides and enhancing crop resilience.
  • Molecular docking simulations pinpointed specific CYP candidates that could effectively metabolize ALS-inhibiting herbicides, suggesting that these insights could help in developing herbicide-tolerant Cannabis varieties for better weed management and increased crop yield.
View Article and Find Full Text PDF

The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist , a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system.

View Article and Find Full Text PDF

Iron acquisition is crucial for plants. The abundance of IRON-REGULATED TRANSPORTER 1 (IRT1) is controlled through endomembrane trafficking, a process that requires small ARF-like GTPases. Only few components that are involved in the vesicular trafficking of specific cargo are known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!