Chronic lymphocytic leukaemia (CLL) exhibits differences between Asians and Caucasians in terms of incidence rate, age at onset, immunophenotype, and genetic profile. We performed genome-wide methylation profiling of CLL in an Asian cohort for the first time. Eight Korean patients without somatic immunoglobulin heavy chain gene hypermutations underwent methyl-CpG-binding domain sequencing (MBD-seq), as did five control subjects. Gene Ontology, pathway analysis, and network-based prioritization of differentially methylated genes were also performed. More regions were hypomethylated (2,062 windows) than were hypermethylated (777 windows). Promoters contained the highest proportion of differentially methylated regions (0.08%), while distal intergenic and intron regions contained the largest number of differentially methylated regions. Protein-coding genes were the most abundant, followed by long noncoding and short noncoding genes. The most significantly over-represented signalling pathways in the differentially methylated gene list included immune/cancer-related pathways and B-cell receptor signalling. Among the top 10 hub genes identified via network-based prioritization, four (UBC, GRB2, CREBBP, and GAB2) had no known relevance to CLL, while the other six (STAT3, PTPN6, SYK, STAT5B, XPO1, and ABL1) have previously been linked to CLL in Caucasians. As such, our analysis identified four novel candidate genes of potential significance to Asian patients with CLL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978354PMC
http://dx.doi.org/10.1038/s41598-020-57919-6DOI Listing

Publication Analysis

Top Keywords

differentially methylated
16
korean patients
8
chronic lymphocytic
8
lymphocytic leukaemia
8
methyl-cpg-binding domain
8
domain sequencing
8
network-based prioritization
8
methylated regions
8
cll
5
genes
5

Similar Publications

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Changes in DNA methylation and subsequent alterations in gene expression have opened a new direction in research related to the pathogenesis of peripheral neuropathic pain (PNP). This study aimed to reveal epigenetic perturbations underlying DNA methylation in the dorsal root ganglion (DRG) of rats with peripheral nerve injury in response to prior exercise and identify potential target genes involved. Male Sprague-Dawley rats were divided into three groups, namely, chronic constriction injury (CCI) of the sciatic nerve, CCI with prior 6-week swimming training (CCI_Ex), and sham operated (Sham).

View Article and Find Full Text PDF

Previous studies have confirmed that methylation regulates gene transcription in the hypothalamus-pituitary-gonadal axis during puberty initiation, but little is known about the regulation of DNA methylation on gene expression in the pineal gland. To screen pineal gland candidate genes related to the onset of goat puberty and regulated by genome methylation, we collected pineal glands from prepubertal and pubertal female goats, then, determined the DNA methylation profile by whole genome bisulfite sequencing and the transcriptome by RNA sequencing on Illumina HiSeqTM2500. We analyzed differentially expressed genes between the Pre group and Pub group using the DESeq2 software (version 1.

View Article and Find Full Text PDF

Plant architecture greatly contributes to grain yield, but the epigenetic regulation of plant architecture remains elusive. Here, we identified the maize (Zea mays L.) mutant plant architecture 1 (par1), which shows reduced plant height, shorter and narrower leaves, and larger leaf angles than the wild type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!