In the Drosophila ovary, somatic escort cells (ECs) form a niche that promotes differentiation of germline stem cell (GSC) progeny. The piRNA (Piwi-interacting RNA) pathway, which represses transposable elements (TEs), is required in ECs to prevent the accumulation of undifferentiated germ cells (germline tumor phenotype). The soma-specific piRNA cluster flamenco (flam) produces a substantial part of somatic piRNAs. Here, we characterized the biological effects of somatic TE activation on germ cell differentiation in flam mutants. We revealed that the choice between normal and tumorous phenotypes of flam mutant ovaries depends on the number of persisting ECs, which is determined at the larval stage. Accordingly, we found much more frequent DNA breaks in somatic cells of flam larval ovaries than in adult ECs. The absence of Chk2 or ATM checkpoint kinases dramatically enhanced oogenesis defects of flam mutants, in contrast to the germline TE-induced defects that are known to be mostly suppressed by сhk2 mutation. These results demonstrate a crucial role of checkpoint kinases in protecting niche cells against deleterious TE activation and suggest substantial differences between DNA damage responses in ovarian somatic and germ cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978372 | PMC |
http://dx.doi.org/10.1038/s41598-020-57901-2 | DOI Listing |
Sci Rep
December 2024
Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
Mycobacterium tuberculosis (M. tb) has a remarkable ability to persist inside host cells. Several studies showed that M.
View Article and Find Full Text PDFMicrobiol Res
December 2024
Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India. Electronic address:
Bacteria commonly live in a spatially organized biofilm assemblage. The metabolic activity inside the biofilm leads to segmented physiological microenvironments. In nature, bacteria possess several pleomorphic forms to withstand certain ecological alterations.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands.
The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.
View Article and Find Full Text PDFAdv Mater
December 2024
Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China.
While tumor organoids have revolutionized cancer research by recapitulating the cellular architecture and behaviors of real tumors in vitro, their lack of functional vasculature hinders their attainment of full physiological capabilities. Current efforts to vascularize organoids are struggling to achieve well-defined vascular networks, mimicking the intricate hierarchy observed in vivo, which restricts the physiological relevance particularly for studying tumor progression and response to therapies targeting the tumor vasculature. An innovative vascularized patient-derived tumor organoids (PDTOs)-on-a-chip with hierarchical, tumor-specific microvasculature is presented, providing a versatile platform to explore tumor-vascular dynamics and antivascular drug efficacy.
View Article and Find Full Text PDFExp Cell Res
December 2024
Oncogenetics Laboratory, Meir Medical Center, Tchernichovsky St 59, Kfar Saba, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, PO Box 39040, Tel Aviv, Tel Aviv, Israel. Electronic address:
Multiple myeloma (MM) malignant plasma cells accumulate in the bone marrow (BM) where their interactions with the microenvironment promote disease progression and drug resistance. Previously, we have shown that bone marrow mesenchymal stem cells (BM-MSCs) (MM and normal donors- ND) derived extracellular matrix (ECM) affected MM cell lines differentially with a pro-MM effect attributed to MM-MSCs' ECM. Here we studied the composition of BM-MSC's ECM (ND versus MM) with focus on elastin (ELN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!