A tensile ring drives tissue flows to shape the gastrulating amniote embryo.

Science

Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.

Published: January 2020

Tissue morphogenesis is driven by local cellular deformations that are powered by contractile actomyosin networks. How localized forces are transmitted across tissues to shape them at a mesoscopic scale is still unclear. Analyzing gastrulation in entire avian embryos, we show that it is driven by the graded contraction of a large-scale supracellular actomyosin ring at the margin between the embryonic and extraembryonic territories. The propagation of these forces is enabled by a fluid-like response of the epithelial embryonic disk, which depends on cell division. A simple model of fluid motion entrained by a tensile ring quantitatively captures the vortex-like "polonaise" movements that accompany the formation of the primitive streak. The geometry of the early embryo thus arises from the transmission of active forces generated along its boundary.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaw1965DOI Listing

Publication Analysis

Top Keywords

tensile ring
8
ring drives
4
drives tissue
4
tissue flows
4
flows shape
4
shape gastrulating
4
gastrulating amniote
4
amniote embryo
4
embryo tissue
4
tissue morphogenesis
4

Similar Publications

Non-destructive prediction and pixel-level visualization of polysaccharide-based properties in ancient paper using SWNIR hyperspectral imaging and machine learning.

Carbohydr Polym

March 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, No. 100, West Outer Ring Road, Guangzhou University Town, Panyu District, Guangzhou 510006, China.

Ancient documents and artworks are invaluable cultural heritage artworks that require careful preservation. Traditional methods for assessing their physical and chemical properties-such as tearing index, tensile index, water absorption, and pH-are often destructive, risking irreversible damage. This study introduces a novel, non-destructive approach using Short-Wave Near-Infrared (SWNIR) hyperspectral imaging (HSI) combined with advanced machine learning models.

View Article and Find Full Text PDF

Reprocessable and Recyclable Materials for 3D Printing via Reversible Thia-Michael Reactions.

Angew Chem Int Ed Engl

January 2025

Georgia Institute of Technology, School Of Chemistry and Biochemistry, 901 Atlantic Drive, 30332, United States, 30332, Atlanta, UNITED STATES OF AMERICA.

The development of chemically recyclable polymers for sustainable 3D printing is crucial to reducing plastic waste and advancing towards a circular polymer economy. Here, we introduce a new class of polythioenones (PCTE) synthesized via Michael addition-elimination ring-opening polymerization (MAEROP) of cyclic thioenone (CTE) monomers. The designed monomers are straightforward to synthesize, scalable and highly modular, and the resulting polymers display mechanical performance superior to commodity polyolefins such as polyethylene and polypropylene.

View Article and Find Full Text PDF

A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors.

Carbohydr Polym

March 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China. Electronic address:

Conductive hydrogels have emerged as excellent candidates for the design and construction of flexible wearable sensors and have attracted great attention in the field of wearable sensors. However, there are still serious challenges to integrating high stretchability, self-healing, self-adhesion, excellent sensing properties, and good biocompatibility into hydrogel wearable devices through easy and green strategies. In this paper, multifunctional conductive hydrogels (PCGB) with good biocompatibility, high tensile (1694 % strain), self-adhesive, and self-healing properties were fabricated by incorporating boric acid (BA) and glucose (Glu) simultaneously into polyacrylic acid (PAA) and chitosan (CS) polymer networks using a simple one-pot polymerization method.

View Article and Find Full Text PDF

The present work focuses on the synthesis and characterization of biobased lignin-poly(lactic) acid (PLA) composites. Organosolv lignin, extracted from beechwood, was used as a filler at 0.5, 1.

View Article and Find Full Text PDF

Deformation-Induced Electromagnetic Reconfigurable Square Ring Kirigami Metasurfaces.

Micromachines (Basel)

December 2024

Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China.

The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!