Assembly of signaling molecules into micrometer-sized clusters is driven by multivalent protein-protein interactions, such as those found within the nephrin-Nck (Nck1 or Nck2) complex. Phosphorylation on multiple tyrosine residues within the tail of the nephrin transmembrane receptor induces recruitment of the cytoplasmic adaptor protein Nck, which binds via its triple SH3 domains to various effectors, leading to actin assembly. The physiological consequences of nephrin clustering are not well understood. Here, we demonstrate that nephrin phosphorylation regulates the formation of membrane clusters in podocytes. We also reveal a connection between clustering and endocytosis, which appears to be driven by threshold levels of nephrin tyrosine phosphorylation and Nck SH3 domain signaling. Finally, we expose an correlation between transient changes in nephrin tyrosine phosphorylation, nephrin localization and integrity of the glomerular filtration barrier during podocyte injury. Altogether, our results suggest that nephrin phosphorylation determines the composition of effector proteins within clusters to dynamically regulate nephrin turnover and podocyte health.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.236877DOI Listing

Publication Analysis

Top Keywords

nephrin
9
nephrin phosphorylation
8
nephrin tyrosine
8
tyrosine phosphorylation
8
phosphorylation
5
multivalent nephrin-nck
4
nephrin-nck interactions
4
interactions define
4
define threshold
4
threshold clustering
4

Similar Publications

Background: The recurrence of primary glomerulonephritis (GN) following kidney transplantation poses a significant threat to graft survival. To enhance kidney transplant outcomes, we must lessen the burden of recurrence. In recent years, there has been progress in understanding the incidence, risk factors for recurrence, pathophysiology, biomarkers, and therapeutics, making it worthwhile to conduct an update on primary glomerulonephritis that may recur following kidney transplantation.

View Article and Find Full Text PDF

The tertiary structure of normal podocytes prevents protein from leaking into the urine. However, observing the complexity of podocytes is challenging because of the scale differences in their three-dimensional structure and the close proximity between neighboring cells in space. In this study, we explored podocyte-secreted angiopoietin-like 4 (ANGPTL4) as a potential morphological marker via super-resolution microscopy (SRM).

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a worldwide public health problem. Podocyte damage is a hallmark of glomerular diseases including focal segmental glomerulosclerosis (FSGS) and one of the leading causes of CKD. Lysine methylation is a crucial post-translational modification.

View Article and Find Full Text PDF

Objective: This research assesses renoprotective effects of saracatinib (Src) in diabetic nephropathy (DN) and the potential underlying processes.

Materials And Methods: Rats were divided into: control, DN, DN + Met + Los, DN + Met + Src, and DN + Met + Los + Src. Rats' ABP, urinary albumin, urinary nephrin, and creatinine clearance were assessed.

View Article and Find Full Text PDF

To compare the levels of podocyte damage markers nephrin and podocalyxin in urine samples taken at the time of gestational diabetes mellitus (GDM) diagnosis and at birth. Amniotic fluid podocalyxin (pdx) and nephrin levels were also analyzed to determine whether GDM had an impact on fetal glomeruli. A total of 50 patients, including 24 patients diagnosed with gestational diabetes and 26 healthy pregnant women whose gestational weeks were matched, were included in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!