Purpose: To compare the torsional failure strength of the humerus after subpectoral biceps tenodesis with an interference screw versus a unicortical button in a human cadaveric model.

Methods: Thirteen matched pairs of fresh-frozen human cadaveric upper extremities were randomized to receive either 2.6 × 12 mm unicortical button or 6.25-mm interference screw subpectoral biceps tenodesis. After the procedure, the humeri were loaded into a materials testing machine. The humeri were loaded in external rotation with respect to the elbow at 1.0°/s until failure. Rotation angle to failure, failure torque, energy absorbed, and stiffness were compared by paired t-tests with alpha set at 0.05.

Results: Humeri that were fixed with unicortical buttons showed statistically significant higher rotation to failure (26.87 ± 5.83 vs 19.04 ± 3.86°, P < .001), failure torque (54.11 ± 22.01 vs 44.95 ± 17.47 Nm, P < .001), and energy absorbed (883.93 ± 582.28 vs 451.40 ± 216.19 Nm-Deg, P = .002) than humeri fixed with interference screws.

Conclusions: In a cadaveric biomechanical model, at time 0, the use of a 2.7 × 12-mm unicortical button fixation in biceps tenodesis resulted in higher loads required to fracture the humerus when compared with a 6.25-mm interference screw fixation in a torsion model.

Clinical Relevance: This study demonstrates a significant biomechanical difference with regards to fracture of the humerus, between 2 commonly used fixations methods and implant sizes, interference screw, and unicortical button. The results of this study can aid surgeons in implant selection as well as help to improve patient education prior to surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.arthro.2019.10.034DOI Listing

Publication Analysis

Top Keywords

interference screw
20
unicortical button
20
biceps tenodesis
16
subpectoral biceps
12
tenodesis interference
8
screw versus
8
versus unicortical
8
human cadaveric
8
625-mm interference
8
humeri loaded
8

Similar Publications

Background: Surgical techniques for biceps tenodesis vary in approach, fixation strategy, and anatomic location without clear superior technique for this common procedure.

Hypothesis/purpose: The purpose of this study was to prospectively evaluate a randomized cohort of patients undergoing arthroscopic suprapectoral (ASBT) with interference screw fixation using an inlay technique versus mini-open subpectoral (MOBT) with a unicortical button implant using an onlay technique with regards to 1) clinical outcome measures and 2) structural healing as evaluated by ultrasound.

Methods: From May 2017 to April 2021, patients undergoing biceps tenodesis were preoperatively randomized to either ASBT or MOBT.

View Article and Find Full Text PDF

Anatomic Distal Biceps Tendon Repair With All-Suture Cortical Buttons.

Arthrosc Tech

December 2024

Department of Orthopaedic Surgery, University of California Irvine, Orange, California, U.S.A.

Acute, traumatic distal biceps tendon ruptures are a common injury in the middle-aged athletic male population, with direct anatomic surgical repair being the most effective technique to restore maximal strength. Multiple techniques for distal biceps tendon repair have been described, including single- or dual-incision approaches and tendon fixation with cortical buttons, interference screws, suture anchors, and transosseous sutures. In this Technical Note, we demonstrate an anatomic distal biceps tendon repair technique with a single-incision approach using 2 all-suture cortical buttons.

View Article and Find Full Text PDF

Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.

Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).

View Article and Find Full Text PDF

Background: A lateral extra-articular tenodesis (LET) is increasingly being utilized to augment an anterior cruciate ligament reconstruction because it has been shown to reduce the risk of postreconstruction graft failure or recurrent rotatory instability. Various femoral fixation techniques are available, including the use of an interference screw, staple, or suture anchor.

Purpose: To determine and compare the biomechanical properties of an LET graft when using an interference screw, staple, or suture anchor for the femoral fixation for a modified Lemaire LET.

View Article and Find Full Text PDF

Purpose: To biomechanically evaluate a flat posterior cruciate ligament (PCL) reconstruction utilizing rectangular femoral bone tunnels.

Methods: Eight fresh-frozen human knee specimens were tested in a six-degrees-of-freedom robotic test setup. In each testing step, a force-controlled test protocol was performed, including 89 N posterior tibial translation (PTT) in neutral, internal and external rotation, from 0 to 90° of flexion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!