A new tetrathiafulvalene (TTF) donor covalently appended with a 1,5-diisopropylverdazyl radical through a cross-conjugated pyridyl linker (3) has been prepared and characterised. Reaction of 3 with tetracyanoquinonedimethane (TCNQ) afforded the 2:1 charge-transfer complex (3) ⋅TCNQ (4), in which the IR and structural data are consistent with 0.25 e charge transfer from the TTF donor (D) to the TCNQ acceptor (A). The TTF and TCNQ molecules adopt a mixed-stack D⋅⋅⋅D⋅⋅⋅A arrangement that does not facilitate conduction. A solution EPR spectrum of 4 comprises a broad featureless singlet, which is consistent with the presence of a TCNQ radical anion. Theoretical studies were performed to probe the exchange interactions within selected fragments of 4 with and without charge transfer. In the absence of charge transfer, DFT calculations reveal weak antiferromagnetic exchange between verdazyl radicals within the (3) monoradical unit. However, partial oxidation of the dimer (3) to the diradical cation leads to an S= ground state, in which the verdazyl radical spins are now aligned co-parallel as a consequence of antiferromagnetic exchange to the additional delocalised TTF-based spin containing unit. The magnetic properties of 4 are consistent with a net S= spin state per formula unit with dominant antiferromagnetic interactions between spin-bearing building blocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.201500309 | DOI Listing |
Anal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:
The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China. Electronic address:
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.
Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!