We present a versatile approach for the fabrication of well-defined networks of interconnected metal nanotubes, which applies electroless plating to ion-track-etched polymer templates that enclose designed pore networks. In order to obtain self-supporting structures, the deposition reactions must be optimized to yield conformal nanoscale metal films on microstructured substrates possessing extensive inner surfaces. Using this route, gold, copper, silver, nickel, and platinum nanotube networks are synthesized. The resulting structures can be handled macroscopically and combine a large surface area with continuous mass transport and conduction pathways, rendering them promising for application in, for example, electrocatalysis and sensing. This potential is demonstrated by employing a gold nanotube network for the amperometric detection of hydrogen peroxide, in which excellent sensitivity, catalyst utilization, and stability is achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.201500073DOI Listing

Publication Analysis

Top Keywords

nanotube networks
8
electroless plating
8
self-supporting metal
4
metal nanotube
4
networks
4
networks highly
4
highly conformal
4
conformal electroless
4
plating versatile
4
versatile approach
4

Similar Publications

In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.

View Article and Find Full Text PDF

Hierarchical 3D FeCoNi Alloy/CNT @ Carbon Nanofiber Sponges as High-Performance Microwave Absorbers with Infrared Camouflage.

Materials (Basel)

December 2024

Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.

Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges.

View Article and Find Full Text PDF

The paper presents a review of CNTs synthesis methods and their application as a functional filler to obtain polymer composites for various technical purposes for strain gauges, electrical heating, anti-static coatings, electrically conductive compounds, etc. Various synthesis methods allow CNTs with different morphology and structural properties to be created, which expands the possibilities of the application of such nanoscale structures. Polymers can provide such effects as 'shape memory' and self-repair of mechanical defects.

View Article and Find Full Text PDF

Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060.

View Article and Find Full Text PDF

High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors.

Sci Adv

January 2025

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.

Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!