A composite of graphene oxide (GO) with mixed oxide (MnCo) was prepared by using a solvothermal method. During the synthesis, both the reduction of GO and growth of metal oxides took place simultaneously. The as-prepared composite material was highly selective for the liquid-phase oxidation of p-cresol to form p-hydroxybenzaldehyde in 71 % yield within 1 h. The composite material was characterised by SEM, X-ray photoelectron spectroscopy, high-resolution TEM and cyclic voltammetry (CV). A CV study revealed that the increase in the redox potential of the mixed oxide after being supported on GO, led to its higher activity of the catalyst for the oxidation reaction. The stability of the catalyst under the reaction conditions was studied by its successful reuse in three cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.201500053 | DOI Listing |
Mol Genet Metab Rep
March 2025
Department of Pediatrics, University of Iowa, Iowa City, IA, USA.
Background: Immediately after birth, adaptation to the extrauterine environment includes an upregulation of fatty acid catabolism. Cystic fibrosis and untreated hypothyroidism exert a life-long impact on fatty acid metabolism, but their influence during this transitional period is unknown. Children and adults with cystic fibrosis exhibit unbalanced fatty acid composition, most prominently a relative deficit of linoleic acid.
View Article and Find Full Text PDFSci Rep
January 2025
Renewable Energy Research Group, Isfahan, Iran.
The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
Proton-electron mixed conductors (PEMCs) are an essential component for potential applications in hydrogen separation and energy conversion devices. However, the exploration of PEMCs with excellent mixed conduction, which is quantified by the ambipolar conductivity, σ = σσ/(σ + σ) (σ: electronic conductivity; σ: proton conductivity), is still a great challenge, largely due to the lack of structural characterization of both conducting mechanisms. In this study, we prepared a molecule-based proton-electron mixed-conducting cation radical salt, (ET)[Pt(pop)(Hpop)]·PhCN (ET: bis(ethylenedithio)tetrathiafulvalene, pop: PHO), by electrocrystallization.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, P. R. China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun 130021, P. R. China. Electronic address:
Phenolic compounds are prevalent in domestic and industrial effluents, leading a serious environmental hazard. Paper-based analysis device mediated by nanozymes has shown great potential in portable visual determination of phenolic compounds in the environment. In this work, we used nicotinic acid derivatives such as pyridine-2,3-dicarboxylic acid, 2-methylnicotinic acid and 2-aminonicotinic acid by coordinating copper (II) acetate monohydrate coordination to obtain Cu2-COOHNA, Cu2-CHNA, Cu2-ANA nanozymes with laccase-activity.
View Article and Find Full Text PDFBiotechnol Adv
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:
Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!