Genetic ablation as well as pharmacological inhibition of sirtuin 2 (SIRT2), an NAD-dependent protein deacylase, have therapeutic effects in various cancers and neurodegenerative diseases. Previously, we described the discovery of a dual SIRT1/SIRT2 inhibitor called cambinol (IC 56 and 59 µM, respectively), which showed cytotoxic activity against cancer cells in vitro and a marked anti-proliferative effect in a Burkitt lymphoma mouse xenograft model. A number of recent studies have shown a protective effect of SIRT1 and SIRT3 in neurodegenerative and metabolic diseases as well as in certain cancers prompting us to initiate a medicinal chemistry effort to develop cambinol-based SIRT2-specific inhibitors devoid of SIRT1 or SIRT3 modulating activity. Here we describe potent cambinol-based SIRT2 inhibitors, several of which show potency of ~600 nM with >300 to >800-fold selectivity over SIRT1 and 3, respectively. In vitro, these inhibitors are found to be toxic to lymphoma and epithelial cancer cell lines. In particular, compounds (IC SIRT2 0.25 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) and (IC SIRT2 0.78 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) showed apoptotic as well as strong anti-proliferative properties against B-cell lymphoma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036909PMC
http://dx.doi.org/10.3390/molecules25030455DOI Listing

Publication Analysis

Top Keywords

sirt2 inhibitors
8
sirt1 sirt3
8
discovery selective
4
sirt2
4
selective sirt2
4
inhibitors
4
inhibitors therapeutic
4
therapeutic agents
4
agents b-cell
4
b-cell lymphoma
4

Similar Publications

Our preliminary data using bone marrow-derived macrophages (BMDMs) collected from ICR mice treated with anti-sirtuin (anti-SIRT) 1 antibody showed that uptake was significantly attenuated. We then further investigated the effect of an inhibitor of SIRT1/2, cambinol, in the progression of . The in vitro results using RAW264.

View Article and Find Full Text PDF

Doxorubicin (DOXO) is a widely used anti-cancer agent, yet the precise mechanism underlying the induction of tumor cell death remains unclear. This study aimed to elucidate new mechanisms by which doxorubicin induces apoptosis in the EMT6 mouse breast carcinoma cell line. The role of doxorubicin was assessed using the XTT assay.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics.

View Article and Find Full Text PDF

Design, synthesis, and biological evaluation of novel 3-naphthylthiophene derivatives as potent SIRT2 inhibitors for the treatment of myocardial fibrosis.

Bioorg Chem

December 2024

Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, People's Republic of China. Electronic address:

SIRT2 (sirtuin2) is a NAD-dependent deacetylase implicated in fibrosis and inflammation of the liver, kidney, and heart. In this study, we designed and synthesized a series of 3-naphthylthiophene derivatives and evaluated their inhibitory activity against the SIRT2 enzyme. Among them, Z18 demonstrated outstanding SIRT2 inhibitory activity and selectivity.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies. Recently, the role of brain-expressed X-linked 4 (BEX4) in cancer progression has received increasing attention. This study aimed to investigate the function of BEX4 in ccRCC and to reveal the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!