Interactions of diet, gut microbiota, and host genetics play essential roles in the development of metabolic diseases. A/J and C57BL/6J (C57) are two mouse strains known to display different susceptibilities to metabolic disorders. In this context, we analyzed gut microbiota composition in A/J and C57 mice, and assessed its responses to high-fat diet (HFD) and antibiotic (AB) treatment. We also exchanged the gut microbiota between the two strains following AB treatment to evaluate its impact on the metabolism. We showed that A/J and C57 mice have different microbiome structure and composition at baseline. Moreover, A/J and C57 microbiomes responded differently to HFD and AB treatments. Exchange of the gut microbiota between the two strains was successful as recipients' microbiota resembled donor-strain microbiota. Seven weeks after inoculation, the differences between recipients persisted and were still closer from the donor-strain microbiota. Despite effective microbiota transplants, the response to HFD was not markedly modified in C57 and A/J mice. Particularly, body weight gain and glucose intolerance in response to HFD remained different in the two mouse strains whatever the changes in microbiome composition. This indicated that genetic background has a much stronger impact on metabolic responses to HFD than gut microbiome composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071469PMC
http://dx.doi.org/10.3390/nu12020287DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
a/j c57
12
microbiota
9
genetic background
8
high-fat diet
8
mouse strains
8
c57 mice
8
microbiota strains
8
donor-strain microbiota
8
response hfd
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!