(1) Background: This study was conducted to investigate the effects of dietary fluoride (F) on tissue retention, digestive enzymes activities, mucosal immunity, and cecum microbial community of laying hens. (2) Methods: Total of 288 37-week-old Hy-Line Gray laying hens with similar laying rate (85.16% ± 3.87%) were adapted to the basal diets for ten days, and then allocated into three groups at random ( 9, 6, 6 replicates/group). The concentrations of F in the diets were 31.19 (the control group, CON), 431.38 (F400, low-F group) and 1237.16 mg/kg (F1200, high-F group), respectively. The trial lasted for 59 days. (3) Results: Results suggested that F residuals in duodenum responded to dietary F concentrations positively. The activities of amylase, maltase and lactase were decreased in high-F group, compared with those in the control group. The mRNA expression levels of jejunum and ileum secretory immunoglobulin A (sIgA) and Mucin 2, and sIgA concentrations were decreased inhigh-F group, than those in the control group. The observed operational taxonomic units (OTUs) of laying hens in high-F group were higher than the CON and low-F groups, and the bacterial structure was different from the other two groups. The was higher in the control group, while , , , and were higher in the high-F group. (4) Conclusions: The actual results confirmed that dietary high F intake increased the F residuals in duodenum, and reduced the digestion and absorption of nutrients and immunity via decreasing the activities of digestive enzymes, impairing intestine mucosal immunity, and disturbing the cecum microbial homeostasis of laying hens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070338 | PMC |
http://dx.doi.org/10.3390/ani10020179 | DOI Listing |
Open Vet J
November 2024
Department of Public Health, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq.
Background: Local hen layers play a crucial role in egg production and the poultry industry. Optimizing their performance, egg quality, and overall health is of paramount importance.
Aim: This research aims to examine the effects of different feed forms on gut bacteria and subsequent effects on productivity, egg quality, and intestinal morphology in indigenous laying hens.
Poult Sci
December 2024
National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
The poultry red mite (PRM), Dermanyssus gallinae, a significant ectoparasite causing diseases in poultry, is globally prevalent and necessitates effective control strategies. There are restrictions on the use of acaricides in poultry across several nations due to worries about medication residues. Consequently, finding safe and efficient treatments for PRM is imperative.
View Article and Find Full Text PDFPoult Sci
December 2024
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
This study aimed to clarify the reproductive remodeling mechanism in enhancing production performance and egg quality during the fasting-induced molting process of laying hens. A total of two-hundred and forty 380-days-old Jingfen No. 6 laying hens, with an average laying rate of 78% were divided into four replicates, with 60 hens in each replicate to receive a four-stage molt induction experiment.
View Article and Find Full Text PDFInt J Food Microbiol
December 2024
College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China. Electronic address:
Salmonella is one of the most common foodborne pathogens. Antimicrobial-resistant Salmonella isolates, especially those resistant to colistin, pose a significant threat to public health worldwide. However, data about the prevalence of mcr-positive Salmonella in animals was few and the dissemination of mcr-positive Salmonella from animals to food, especially eggs, has not been fully addressed.
View Article and Find Full Text PDFSci Rep
December 2024
Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, and Microbiology Graduate Program, University of Delaware, Newark, DE, USA.
The transcriptional regulation of gene expression in the latter stages of follicular development in laying hen ovarian follicles is not well understood. Although differentially expressed genes (DEGs) have been identified in pre-recruitment and pre-ovulatory stages, the master regulators driving these DEGs remain unknown. This study addresses this knowledge gap by utilizing Master Regulator Analysis (MRA) combined with the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) for the first time in laying hen research to identify master regulators that are controlling DEGs in pre-recruitment and pre-ovulatory phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!