Decreasing of Leaching and Improvement of Geopolymer Properties by Addition of Aluminum Calcium Cements and Titanium Oxide.

Materials (Basel)

Institute of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Jana Pawła II 37, 31-864 Cracow, Poland.

Published: January 2020

The article presents the latest results of the leaching of alkali from geopolymers depending on the introduced additions in the form of aluminum calcium cement and nanometric titanium oxide. Aluminum calcium cements were introduced in two variants: G40 (>40% AlO) and G70 (>70% AlO) in amounts of 0%, 2%, and 4% by weight. Titanium oxide was also incorporated in amounts of 2% and 4% by weight. The results of conductivity tests of solutions in which geopolymers were immersed were carried out. On this basis, it was found that geopolymers cured in the aquatic environment have a lower risk of efflorescence in the later periods of their use due to leaching of compounds at the stage of aquatic curing. In addition, it was found that the addition of calcium aluminum cements decreases the leaching of substances from geopolymers. It was also found that geopolymers based on an 8 M NaOH solution have greater leaching than when using a 10 M solution. The results of the compressive strength tests for the tested samples were also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040599PMC
http://dx.doi.org/10.3390/ma13030495DOI Listing

Publication Analysis

Top Keywords

aluminum calcium
12
titanium oxide
12
calcium cements
8
amounts weight
8
geopolymers
5
decreasing leaching
4
leaching improvement
4
improvement geopolymer
4
geopolymer properties
4
properties addition
4

Similar Publications

Background: This study assessed stress distributions in simulated mandibular molars filled with various materials after the removal of fractured instruments from the apical thirds of the root canals.

Methods: Finite element models of the mesial and distal root canals were created, where fractured instruments were assumed to be removed using a staging platform established with a modified Gates-Glidden bur (Woodpecker, Guangxi, P.R.

View Article and Find Full Text PDF

Mechanical behavior of external root resorption cavities restored with different materials: a 3D-FEA study.

BMC Oral Health

January 2025

Faculty of Dentistry, Department of Endodontics, Ondokuz Mayis University, Samsun, Kurupelit, 55139, Turkey.

Background: The aim was to evaluate the stresses in teeth, with external root resorption (ERR) restored with different materials using finite element analysis (FEA).

Methods: In this study, a Micro-CT scan was conducted on a prepared maxillary central tooth. DICOM-compatible images obtained from the sections were converted into stereolithography format using Ctan software.

View Article and Find Full Text PDF

Metal ion transport in maize: survival in a variable stress environment.

J Genet Genomics

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Maize (Zea mays) is the most widely cultivated crop in the world. Maize production is closely linked to the extensive uptake and utilization of various mineral nutrients. Potassium (K), calcium (Ca), and magnesium (Mg) are essential metallic macronutrients for plant growth and development.

View Article and Find Full Text PDF

Enhancing Ω Phase Thermal Stability in Al Alloys through Interstitial Ordering.

J Phys Condens Matter

January 2025

Department of Physics, Hunan Normal University, Building of quantum, Hunan normal university, Changsha, Hunan, 410081, CHINA.

Scandium (Sc) can orderly occupy interstitial sites within the Ω phase of aluminum alloys, forming a new phase that significantly enhances the thermal stability of the alloy. However, Sc is relatively expensive and rare. In this work, we employ first-principles calculations to delve into the physical essence interstitial ordering of Sc in enhancing thermal stability at the electronic level, thereby revealing the crucial factors responsible for this improvement.

View Article and Find Full Text PDF

Enhancing Ω Phase Thermal Stability in Al Alloys through Interstitial Ordering.

J Phys Condens Matter

January 2025

Department of Physics, Hunan Normal University, Building of quantum, Hunan normal university, Changsha, Hunan, 410081, CHINA.

Scandium (Sc) can orderly occupy interstitial sites within the Ω phase of aluminum alloys, forming a new phase that significantly enhances the thermal stability of the alloy. However, Sc is relatively expensive and rare. In this work, we employ first-principles calculations to delve into the physical essence interstitial ordering of Sc in enhancing thermal stability at the electronic level, thereby revealing the crucial factors responsible for this improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!