A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interactions between stimuli-evoked cortical activity and spontaneous low frequency oscillations measured with neuronal calcium. | LitMetric

Spontaneous brain activity has been widely used to map brain connectivity. The interactions between task-evoked brain responses and the spontaneous cortical oscillations, especially within the low frequency range of ~0.1 ​Hz, are not fully understood. Trial-to-trial variabilities in brain's response to sensory stimuli and the ability for brain to detect under noisy conditions suggest an appreciable impact of the brain state. Using a multimodality imaging platform, we simultaneously imaged neuronal Ca and cerebral hemodynamics at baseline and in response to single-pulse forepaw stimuli in rat's somatosensory cortex. The high sensitivity of this system enables detection of responses to very weak and strong stimuli and real time determination of low frequency oscillations without averaging. Results show that the ongoing neuronal oscillations inversely modulate Ca transients evoked by sensory stimuli. High intensity stimuli reset the spontaneous neuronal oscillations to an unpreferable excitability following the stimulus. Cerebral hemodynamic responses also inversely interact with the spontaneous hemodynamic oscillations, correlating with the neuronal Ca transient changes. The results reveal competing interactions between spontaneous oscillations and stimulation-evoked brain activities in somatosensory cortex and the resultant hemodynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418846PMC
http://dx.doi.org/10.1016/j.neuroimage.2020.116554DOI Listing

Publication Analysis

Top Keywords

low frequency
12
frequency oscillations
8
sensory stimuli
8
somatosensory cortex
8
neuronal oscillations
8
oscillations
7
spontaneous
6
brain
6
neuronal
5
stimuli
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!