A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hederagenin protects mice against ovariectomy-induced bone loss by inhibiting RANKL-induced osteoclastogenesis and bone resorption. | LitMetric

Hederagenin protects mice against ovariectomy-induced bone loss by inhibiting RANKL-induced osteoclastogenesis and bone resorption.

Life Sci

Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China; Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. Electronic address:

Published: March 2020

Aims: Postmenopausal osteoporosis and other osteolytic bone diseases are often caused by the elevation in osteoclastogenesis and/or increased osteoclastic bone resorption, leading to excessive bone loss. Hederagenin (Hed) is a pentacyclic triterpenoid saponin extracted from various natural medicinal plants and exhibits numerous biological activities and may offer benefits against bone-related conditions. We evaluated the effects of Hed on osteoclast formation and bone resorption in vitro and the in vivo therapeutic benefits in the mouse model of ovariectomy (OVX)-induced bone loss.

Main Methods: In vitro, osteoclast formation were determined by TRAcp staining; bone resorption were examined using Hydroxyapatite resorption assay and Podosomal actin belt formation assay; Related molecular mechanisms were determined by western blot assay. Construction of OVX mice by bilateral oophorectomy to simulate bone loss in vivo.

Key Findings: In vitro cellular assays showed that Hed inhibited RANKL-induced osteoclast formation and osteoclast bone (hydroxyapatite) resorption as well as marker gene expression from BMM culture. Mechanistically, Hed attenuated RANKL-induced intracellular reactive oxygen species (ROS) production, and MAPK signaling pathway (ERK and p38) activation which curbed the downstream induction of c-Fos and NFATc1. Consistent with the in vitro findings, Hed administration effectively protected OVX mice from bone loss by reducing osteoclast number and activity on bone surface.

Significance: Our data provided promising evidence for the potential use of Hederagenin in the treatment of osteoclast-mediated osteolytic bone diseases such as postmenopausal osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.117336DOI Listing

Publication Analysis

Top Keywords

bone loss
16
bone resorption
16
bone
13
osteoclast formation
12
postmenopausal osteoporosis
8
osteolytic bone
8
bone diseases
8
hydroxyapatite resorption
8
ovx mice
8
resorption
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!