Neisseria gonorrhoeae is a gram negative diplococcus bacterium and the causative agent of the sexually transmitted disease Gonorrhea. It has been recently given the status of "superbug" by World Health Organization because of the increasing antibiotic resistance and unavailability of a viable vaccine candidate. Over recent years, there have been increasing reports about the use of subtractive genomics to identify potential drug and vaccine targets. Our study utilizes codon biasing, a tool to identify the essential genes, in N. gonorrhoeae that could be utilized as novel therapeutic targets for drug or vaccine development. Through the screening of 2350 total genes, we present a list of 29 such drug candidate genes based on codon adaptation. Through the data-mining with BLAST2GO and InterProScan databases, we could predict the function of these 29 genes. These genes are involved in pivotal cellular functions like DNA replication, energy synthesis and metabolites production. This study also shortlists the essential genes of N. gonorrhoeae that could be used to target Neisseria. We identified a molecule/drug which can be used to target essential protein DapD (succinyltransferase).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2020.110172 | DOI Listing |
Mol Biotechnol
December 2024
Unit of Scientific Research, Applied College, Qassim University, Buraydah, 52571, Saudi Arabia.
The Zika virus (ZIKV), an arbovirus within the Flavivirus genus, is associated with severe neurological complications, including Guillain-Barré syndrome in affected individuals and microcephaly in infants born to infected mothers. With no approved vaccines or antiviral treatments available, there is an urgent need for effective therapeutic options. This study aimed to identify new natural compounds with inhibitory potential against the NS2B-NS3 protease (PDB ID: 5LC0), an essential enzyme in viral replication.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.
Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Orthopaedics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Thung Phayathai, Ratchathewi, Bangkok, 10400, Thailand.
Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!