Solar conversion of carbon dioxide (CO) into hydrocarbon fuels offers a promising approach to fulfill the world's ever-increasing energy demands in a sustainable way. However, a highly active catalyst that can also tune the selectivity toward desired products must be developed for an effective process. Here, we present oxygen functionalized copper (OFn-Cu) nanoparticles as a highly active and methane (CH) selective catalyst for the electrocatalytic CO reduction reaction. Our electrochemical results indicate that OFn-Cu (5 nm) nanoparticles with an oxidized layer at the surface reach a maximum CH formation current density and turnover frequency of 36.24 mA/cm and of 0.17 s at the potential of -1.05 V RHE, respectively, exceeding the performance of existing Cu and Cu-based catalysts. Characterization results indicate that the surface of the OFn-Cu nanoparticles consists of an oxygen functionalized layer in the form of Cu (CuO) separated from the underneath elemental Cu by a Cu (CuO) sublayer. Density functional theory calculations also confirm that presence of the O site at the CuO (101) surface is the main reason for the enhanced activity and selectivity. Using this catalyst, we have demonstrated a flow cell with an active area of 25 cm that utilizes solar energy to produce 7.24 L of CH after 10 h of continuous process at a cell power density of 30 mW/cm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.9b08792 | DOI Listing |
JMIR Res Protoc
January 2025
Clinical Physiology Institute, Consiglio Nazionale delle Ricerche, Pisa, Italy.
Background: Among cardiovascular diseases, adult patients with congenital heart disease represent a population that has been continuously increasing, which is mainly due to improvement of the pathophysiological framing, including the development of surgical and reanimation techniques. However, approximately 20% of these patients will require surgery in adulthood and 40% of these cases will necessitate reintervention for residual defects or sequelae of childhood surgery. In this field, cardiac rehabilitation (CR) in the postsurgical phase has an important impact on the patient by improving psychophysical and clinical recovery in reducing fatigue and dyspnea to ultimately increase survival.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Peripheral arterial chemoreceptors monitor the levels of arterial blood gases and adjust ventilation and perfusion to meet metabolic demands. These chemoreceptors are present in all vertebrates studied to date but have not been described fully in reptiles other than turtles. The goals of this study were to 1) identify functional chemosensory areas in the South American rattlesnake (Crotalus durissus) 2) determine the neurochemical content of putative chemosensory cells in these areas and 3) determine the role each area plays in ventilatory and cardiovascular control.
View Article and Find Full Text PDFNanoscale
January 2025
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Photocatalytic detoxification of sulfur mustards (, bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.
View Article and Find Full Text PDFChem Rec
January 2025
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
In recent times, chemical looping offered a sustainable alternative for upgrading light hydrocarbons into olefins. Olefins are valuable platform chemicals that are utilized for diverse applications. To close the wide shortfall in their global supply, intensified efforts are ongoing to develop on-purpose production technologies.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) is a promising alternative for oxygen evolution reactions. The search for efficient catalysts has been attracting increasing scientific attention. This work explores the performance of nitrogen-doped graphene-supported single-atom catalysts (M-NC SACs) for the reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!