α-Conidendrin is a polyphenolic compound found mainly in Taxus yunnanensis, as the source of chemotherapy drug paclitaxel, which has been used in traditional medicine for treatment of cancer. This study aimed to investigate the anticancer activity and molecular mechanisms of α-conidendrin on breast cancer cell lines. The results of the present study show that α-conidendrin possesses potent antiproliferative effects on breast cancer cell lines MCF-7 and MDA-MB-231. α-Conidendrin significantly induced apoptosis in breast cancer cells via reactive oxygen species generation, upregulation of p53 and Bax, downregulation of Bcl-2, depolarization of mitochondrial membrane potential (MMP), release of cytochrome c from mitochondria, and activation of caspases-3 and -9. α-Conidendrin remarkably inhibited the proliferation of breast cancer cells through induction of cell cycle arrest by upregulating p53 and p21 and downregulating cyclin D1 and CDK4. Unlike breast cancer cells, the antiproliferative effect of α-conidendrin on human foreskin fibroblast cells (normal cells) was very small. In normal cells, reactive oxygen species levels, loss of MMP, release of cytochrome c, mRNA expression of p53, p21, cyclin D1, CDK4, Bax, and Bcl-2 as well as mRNA expression and activity of caspases-3 and -9 were significantly less affected by α-conidendrin compared with cancer cells. These results suggest that α-conidendrin can be a promising agent for treatment of breast cancer with little or no toxicity against normal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.6613DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
cancer cells
16
cancer cell
12
cell lines
12
normal cells
12
α-conidendrin
9
cancer
9
anticancer activity
8
activity molecular
8
molecular mechanisms
8

Similar Publications

Management of nausea and vomiting induced by antibody-drug conjugates.

Breast Cancer

January 2025

Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.

Antibody-drug conjugates (ADCs) are an emerging class of anticancer therapy that combines the specificity and long circulation half-life of monoclonal antibodies with the cytotoxic potency of the payload connected through a chemical linker. The optimal management of toxicities is crucial for improving quality of life in patients undergoing ADCs and for avoiding improper dose reductions or discontinuations. This article focuses on the characteristics and management of nausea and vomiting (NV) induced by three ADCs: trastuzumab deruxtecan (T-DXd), sacituzumab govitecan (SG), and datopotamab deruxtecan (Dato-DXd).

View Article and Find Full Text PDF

Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!