Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface-enhanced Raman scattering (SERS) and magnetic resonance imaging (MRI)-guided phototherapy are new breakthroughs in cancer therapeutics due to their complementary advantages, such as enhanced imaging spatial resolution and depth. Herein, we synthesized monodispersed Prussian blue-encapsulated gold nanoparticles (Au@PB NPs), in which the plasmonic gold core plus coordination polymer of cyanide (C[triple bond, length as m-dash]N) and iron ions coincidently become a superexcellent contrast agent for both MRI and zero-background SERS imaging. PB, as a signal source for MR and SERS, can be easily assembled onto single Au NPs, of which iron ions possess high relaxation efficiency for in vivo MRI, e.g., the longitudinal and transversal relaxation efficiency values are 0.86 mM-1 s-1 (r1) and 5.42 mM-1 s-1 (r2), respectively. Furthermore, with the help of the plasmonic enhancement of the gold core, the C[triple bond, length as m-dash]N groups exhibit a specific, strong, and stable (3S) SERS emission in the Raman-silent region (1800-2800 cm-1), allowing accurate in vivo imaging at the single or even subcellular level. More importantly, PB has remarkable absorption properties in the near infrared region, and can be used as a photosensitizer for photothermal (PT) and photodynamic (PD) therapy simultaneously. Hence, the ideal integration of a plasmonic Au core and PB shell into a single monodispersed MR-guided NP, with zero-background SERS signals, is an important candidate for both tumor navigation and in situ PT/PD treatment guided by SERS/MR dual-mode imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr08471a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!