Although Parkinson's disease (PD) is the second most common neurodegenerative disorder, the preventative or therapeutic agents for the treatment of PD are limited. Eucommia ulmoides Oliver (EuO) is widely used as a traditional herb to treat various diseases. EuO bark extracts have been reported to possess anti-PD activity. Here, we investigated whether extracts of EuO leaves (EEuOL) also have therapeutic effects on PD since similar components and clinical applications have been found between barks and leaves of this tree. We identified the chemical composition of EEuOL by HPLC-Q-TOF-MS and tested the anti-PD effect of EEuOL using the zebrafish PD model. As a result, 28 compounds including 3 phenolic acids, 7 flavonoids, and 9 iridoids were identified. EEuOL significantly reversed the loss of dopaminergic neurons and neural vasculature and reduced the number of apoptotic cells in zebrafish brain in a concentration-dependent manner. Moreover, EEuOL relieved locomotor impairments in MPTP-modeled PD zebrafish. We also investigated the underlying mechanism and found that EEuOL may activate autophagy, contributing to α-synuclein degradation, therefore alleviating PD-like symptoms. Molecular docking simulation implied the interaction between autophagy regulators (Pink1, Beclin1, Ulk2, and Atg5) and phenolic acids of EEuOL, affirming the involvement of autophagy in EEuOL-exerted anti-PD action. The overall results indicated the anti-PD effect of EEuOL, opening the possibility to use the extract in PD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9fo02288kDOI Listing

Publication Analysis

Top Keywords

phenolic acids
12
eucommia ulmoides
8
ulmoides oliver
8
eeuol
8
anti-pd eeuol
8
anti-parkinson's disease
4
disease activity
4
activity phenolic
4
acids eucommia
4
oliver leaf
4

Similar Publications

Profiling of secondary metabolites within Fragaria sp. (strawberry), Rubus sp. (raspberries and blackberries), and Ribes sp.

View Article and Find Full Text PDF

Analysis of Salicylic and Phenolic Acids in the Plant by HPLC-Fluorescence Detector.

Methods Mol Biol

January 2025

Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.

Salicylic acid is a member of benzoic acid derivatives, a group of compounds which have a backbone of C6C1 consisting of one carboxyl group and one (or more) hydroxyl group(s) attached to the aromatic ring. Salicylic acid is a signaling compound in systemic acquired resistance (SAR). An increased level of salicylic acid is found in the plant after a fungi's attack, which further induces the accumulation of phytoalexins, low molecular weight defense compounds.

View Article and Find Full Text PDF

Diabetes mellitus (DM) and cancer are multifactorial diseases with significant health consequences, and their relationship with aging makes them particularly challenging. Epidemiological data suggests that individuals with DM are more susceptible to certain cancers. This study examined the bioactive properties of Hypericum scabrum extracts, including methanol, hexane, and others, focusing on their inhibitory effects on key enzymes associated with DM and neurodegenerative diseases, such as acetylcholinesterase, butyrylcholinesterase, α-amylase, and α-glucosidase.

View Article and Find Full Text PDF

Pretreatment of enzymatic hydrolysis lignin based on deep eutectic solvent containing a reversibly-soluble base.

Int J Biol Macromol

January 2025

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:

The pretreatment with green deep eutectic solvents (DESs) is conducive to realizing the high-efficiency utilization of lignin at a low cost. In this study, an innovative choline chloride/urea/calcium hydroxide (ChCl/UR/Ca(OH)) DES containing a reversibly-soluble base Ca(OH) was developed for the pretreatment of enzymatic hydrolysis lignin (EHL). The lignin pretreatment effects of the proposed ChCl/UR/Ca(OH) DES were compare with a series of DESs.

View Article and Find Full Text PDF

Spectroscopic and in silico data indicate that phenolic acids interact with aldose reductase with different degrees of affinity at a single binding site.

Int J Biol Macromol

January 2025

INBIAS-CONICET, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba, Argentina. Electronic address:

Our previous studies demonstrated that the enzyme aldose reductase (AR) is activated by its interaction with tubulin, a mechanism which can lead to the emergence of secondary diseases in diabetic patients. We also found that different compounds derived from phenolic acid (CAFs) can prevent this interaction and thus AR activation. Here, we used spectroscopic and bioinformatic techniques to explore the interaction between AR and three CAFs: 3-nitrotyrosine (NTyr), Tyrosine (Tyr), and vanillic acid (Van).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!