Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neural networks are increasingly being used in science to infer hidden dynamics of natural systems from noisy observations, a task typically handled by hierarchical models in ecology. This article describes a class of hierarchical models parameterised by neural networks - neural hierarchical models. The derivation of such models analogises the relationship between regression and neural networks. A case study is developed for a neural dynamic occupancy model of North American bird populations, trained on millions of detection/non-detection time series for hundreds of species, providing insights into colonisation and extinction at a continental scale. Flexible models are increasingly needed that scale to large data and represent ecological processes. Neural hierarchical models satisfy this need, providing a bridge between deep learning and ecological modelling that combines the function representation power of neural networks with the inferential capacity of hierarchical models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.13462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!