A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Erythropoietin promotes functional recovery via anti-apoptotic mechanisms in mouse unilateral ureteral obstruction. | LitMetric

Erythropoietin promotes functional recovery via anti-apoptotic mechanisms in mouse unilateral ureteral obstruction.

Cell Stress Chaperones

The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.

Published: March 2020

The purpose of the work was to investigate mechanisms of erythropoietin-induced protection and accelerated recovery of kidneys and ureters from obstructive injury. Unilateral ureteral obstruction was established for 24, 48, and 72 h in C57BL/6 mice using a non-traumatic micro-clip followed by the microscopic quantification of ureteral peristalsis pre- and post-obstruction. Expression of erythropoietin, erythropoietin receptor, β-common receptor, and downstream apoptosis-related markers was assessed by RT-PCR and immunohistochemistry in ureters and kidneys and compared to the respective organs on the contralateral side within each animal. Expression of genes in kidneys and ureters from mice treated with 20 IU of erythropoietin daily for 72 h prior to obstruction was compared to that of untreated mice following obstruction. Apoptosis in ureteral tissues after 72-h obstruction was assessed via TUNEL assay. Ureteral obstruction increased apoptosis in affected ureters, with peristaltic function halted following all periods of obstruction. Erythropoietin treatment suppressed apoptosis in obstructed tissues and increased the percentage of mice retaining ureteral function immediately following obstruction reversal. Erythropoietin, erythropoietin receptor, Bcl-2, and Bcl-xl mRNA expression were down-regulated, while phospho-Nf-ĸb p65 was up-regulated in ureteral epithelia following obstruction. Erythropoietin treatment induced anti-apoptotic signaling via down-regulated Bax mRNA expression and abrogated phospho-Nf-ĸb p65. Erythropoietin-induced protection of ureteral function and accelerated recovery post-obstruction removal is mediated via anti-apoptotic mechanisms. Ureteral function is disrupted even following obstruction removal, negatively affecting renal function due to delayed recovery. Thus, our results represent a potential target for the development of safe therapeutic agents aimed at improving functional recovery from obstructive injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058756PMC
http://dx.doi.org/10.1007/s12192-020-01067-3DOI Listing

Publication Analysis

Top Keywords

ureteral obstruction
12
ureteral function
12
obstruction
10
ureteral
9
erythropoietin
8
functional recovery
8
anti-apoptotic mechanisms
8
erythropoietin-induced protection
8
accelerated recovery
8
kidneys ureters
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!