The present study shows that copper(II) ions can be determined with a new fluorescent probe that is based on the use of CdSe quantum dots capped with deep eutectic solvent (DES-CdSe QDs). The capped QDs were prepared in aqueous phase by a one-step procedure under ambient atmosphere using selenium dioxide as a stable precursor for selenium, and ascorbic acid as non-toxic reducing agent. The deep eutectic solvent is composed of choline chloride and thioglycolic acid and acts as stabilizing and functionalizing agent. The fluorescent probe undergoes an increase in the fluorescence intensity (with excitation/emission wavelengths at 380/560 nm) in the presence of Cu(II). Other ions display no significant effect on fluorescence. The effects of sample pH value, concentration of buffer, and volume of QDs solution were optimized by response surface methodology using a Box-Behnken statistical design. Under the optimal conditions, the response of the probe is linear in the 10-600 nM Cu(II) concentration range, with a 5.3 nM limit of detection. This is lower than the allowable maximum Cu(II) concentration in drinking water. The relative standard deviation of the method for five replicate measurements of Cu(II) at a 100 nM concentration level is 2.0%. The probe was successfully applied to the determination of Cu(II) in various drinks. Graphical abstractSchematic representation of a fluorometric method for the determination of Cu(II) at nanomolar concentration levels. The fluorescent system consists of deep eutectic solvent-capped cadmium selenide quantum dots (DES-CdSe QDs). Fluorescence is strongly enhanced by copper(II).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-019-4085-2 | DOI Listing |
Carbohydr Polym
March 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China. Electronic address:
Hermetia illucens, with a short growth cycle, is promising as a valuable source of chitin. However, the optimal method for extracting chitin from this insect and its application for hemostasis has not been addressed. This work employed an environmentally friendly choline chloride-lactic acid deep eutectic solvent technology to extract chitin effectively from the Hermetia illucens pupae shells, realizing one-step removal of inorganic salts and proteins.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China. Electronic address:
The treatment and monitoring of infected skin wounds present significant clinical challenges. Herein, a multifunctional poly(deep eutectic solvent) (PDES) electroactive hydrogel is developed by optimizing the components and the ratio of hydrogen donors and acceptors, achieving well wound hemostasis, wound healing, and monitoring administration performace. The PDES hydrogel dressing exhibits mechanical properties, including high toughness, fatigue resistance (over 9000 compression cycles), and superior skin adhesion (over 70 kPa).
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Rome, Italy. Electronic address:
Spirulina is a unicellular microalga, characterized by blue/green color, that has received significant attention for its interesting nutritional composition. Phenolic compounds and phycocyanin (PC) are responsible for the many biological activities of Spirulina. Spirulina phenolic compounds are usually extracted using organic solvents, while PC is extracted with water or phosphate buffer solution, obtaining an extract characterized by low stability and low purity.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
Lignin is a naturally derived biomacromolecule with excellent biocompatibility and the potential for biomedical application. For the first time, this study isolated nanosized lignin microspheres (LMSs) directly from wheat straw with a polyol-based deep eutectic solvent. The size of these LMSs can be regulated by changing the isolation parameters, ranging from 90 nm to 330 nm.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!