Background: Short-time creep behaviorfor aseries of biodegradable nanocomposites, which areused as implantable devices inthe body, is a crucial factor.The present study aimed to investigate the effect of bioactive glass nanoparticles (BGn) on creep and creep-recovery behaviors of polylactic acid/polycaprolactone (PLA/PCL) blends at different given loads and different applied temperatures.

Methods: A series of biodegradable nanocomposites consisted of PLA/PCL blends (comprising 80 parts PLA and 20 parts PCL) with different amounts of modified-BGn (m-BGn) fillers were prepared using the evaporated solvent casting technique. Creep and creep-recovery behaviors of all specimens were studied at different valuable stressesof 3 and 6 MPa and different given temperatures of 25 and 37°C.

Results: In all cases, m-BGn improved the creep resistance of the nanocomposites due to the retardation effect during the creep behaviors of the nanocomposite systems. The obtained results in terms of creep and creep-recovery properties determined that the nanocomposites of PLA/PCL/m-BGn can satisfy the required conditions of an appropriate anterior cruciate ligament reconstruction (ACL-R) screw.

Conclusion: The obtained results confirmed that the BGn plays an impeding role in the movement of PLA/PCL chains leading to in increase the creep resistance. According to the results, it was determined that the nanocomposites of PLA/PCL and m-BGn can satisfy the required circumstances of a proper ACL-R screw.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6935526PMC

Publication Analysis

Top Keywords

creep creep-recovery
12
creep
8
biodegradable nanocomposites
8
creep-recovery behaviors
8
pla/pcl blends
8
creep resistance
8
determined nanocomposites
8
satisfy required
8
nanocomposites
6
creep behavior
4

Similar Publications

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

The smart labels prepared via the casting method and molten 3D printing method have a long heating time at high temperature and a dense network structure, resulting in a decrease in the color response ability of the labels. Therefore, this study uses a nonphase change foam 3D printing method with a shorter heating time to improve the color sensitivity of smart labels. By the pH driving method, the blending and pregelation of sodium alginate (Alg) can extend the drainage time of the interfacial film to the maximum extent, thus further improving the foam stability of egg white protein (EWP) and endowing the interfacial adsorption layer with better flexibility and fluidity.

View Article and Find Full Text PDF

This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based (HA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and HA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)-thiol as crosslinkers. The six resulting HA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties.

View Article and Find Full Text PDF

Improving the rheological and tribological properties of emulsion-filled gel by ultrasound-assisted cross-linked myofibrillar protein emulsion: Insight into the simulation of oral processing.

Ultrason Sonochem

December 2024

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

This study aimed to investigate the effect of ultrasound-assisted cross-linking of myofibrillar protein (MP) emulsions on the enhancement of rheological and tribological properties of emulsion-filled gel. The micro-morphology, texture, water hold capacity (WHC), chemical forces, linear shear rheological behavior, large amplitude oscillatory shear (LAOS), oil-released content, and simulated oral friction of the water-filled gel (WP-G), the original MP fabricated emulsion-filled gel (NP-G), the crosslinked MP fabricated emulsion-filled gel (NPG-G), and the ultrasound treated crosslinked MP fabricated emulsion-filled gel (NPGU-G) were determined. Results indicated that emulsion as filler phase significantly improved the rheological and tribological properties of the gel, especially for the ultrasound-assisted MP emulsion-filled gel (NPGU-G) group, the smaller droplet size of emulsion contributed to the density and structural uniformity of the gel.

View Article and Find Full Text PDF

Influence of Basalt Fiber Morphology on the Properties of Asphalt Binders and Mixtures.

Materials (Basel)

November 2024

College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China.

Article Synopsis
  • * Researchers used microscopy and various rheological and performance tests to evaluate how chopped basalt fiber (CBF) and flocculent basalt fiber (FBF) affect asphalt binders and mixtures.
  • * The study found that both fiber types improve binder properties, but FBFs were particularly effective, showing higher resistance to deformation and providing better overall performance enhancements in asphalt mixtures compared to CBFs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!