Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962682PMC
http://dx.doi.org/10.1002/mdc3.12853DOI Listing

Publication Analysis

Top Keywords

novel method
4
method treating
4
treating apomorphine-induced
4
apomorphine-induced subcutaneous
4
subcutaneous nodules
4
novel
1
treating
1
apomorphine-induced
1
subcutaneous
1
nodules
1

Similar Publications

Microfluidic-based redesign of a humidity-driven energy harvester.

Lab Chip

January 2025

Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, 6-2-3, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.

Integrating microfluidic elements onto a single chip offers many advantages, including miniaturization, portability, and multifunctionality, making such systems highly useful for biomedical, healthcare, and sensing applications. However, these chips need redesigning for compatibility with microfluidic fabrication methods such as photolithography. To address this, we integrated microfluidics technology into our previously developed humidity-driven energy harvester to create a self-powered system and redesigned it so that it could be fabricated using photolithography and printing.

View Article and Find Full Text PDF

Recent Advancements in Drug Targeting for Ferroptosis as an Antitumor Therapy: Development of Novel therapeutics.

Curr Cancer Drug Targets

January 2025

Department of Chemistry, Siddhachalam Laboratory, Raipur, 493221, Chhattisgarh, India.

Objectives: The primary objective of this review is to provide updated mechanisms that regulate ferroptosis sensitivity in cancer cells and recent advancements in drug targeting for ferroptosis as an antitumor therapy.

Methods: To achieve these objectives, a comprehensive literature review was conducted, analyzing recent studies on ferroptosis, including its cellular, molecular, and gene-level characteristics. The review involved an evaluation of advancements in ferroptosis drug research across various medical domains, with particular attention to novel therapeutic approaches in nano-medicine, TCM, and Western medicine.

View Article and Find Full Text PDF

Background: Since there is currently no cure for amyotrophic lateral sclerosis (ALS), it is essential to search for diagnostic biomarkers and novel treatments to reduce the severity of this disease. One of these treatment approaches is stem cell transplantation.

Objective: This study aims to evaluate the safety and efficacy of repeated transplantation of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with ALS by analyzing clinical and molecular data.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.

View Article and Find Full Text PDF

X-ray diffraction is ideal for probing the sub-surface state during complex or rapid thermomechanical loading of crystalline materials. However, challenges arise as the size of diffraction volumes increases due to spatial broadening and because of the inability to deconvolute the effects of different lattice deformation mechanisms. Here, we present a novel approach that uses combinations of physics-based modeling and machine learning to deconvolve thermal and mechanical elastic strains for diffraction data analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!