The conjugal transfer is a major driving force in the spread of antibiotic resistance genes. Nevertheless, an effective approach has not yet been developed to target conjugal transfer to prevent the acquisition of antibiotic resistance by this mechanism. This study aimed to identify potential targets for plasmid transfer blockade by isolating mutants defective in the completion of the acquisition of antibiotic resistance via conjugal transfer. We performed genome-wide screening by combining an IncP1α-type broad host range plasmid conjugation system with a comprehensive collection of gene knockout mutants (Keio collection; 3884 mutants). We followed a six-step screening procedure to identify the mutants showing conjugation deficiency precisely. No mutants defective in the conjugal transfer were isolated, strongly suggesting that cannot escape from being a recipient organism for P1α plasmid transfer. However, several mutants with low viability were identified, as well as mutants defective in establishing resistance to chloramphenicol, which was used for transconjugant selection. These results suggest that developing drugs capable of inhibiting the establishment of antibiotic resistance is a better approach than attempting to prevent the conjugal transfer to block the spread of antibiotic resistance genes. Our screening system based on the IncP1α-type plasmid transfer can be extended to isolation of target genes for other drugs. This study could be the foundation for further research to understand its underlying molecular mechanism through functional analysis of the identified genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6960129 | PMC |
http://dx.doi.org/10.3389/fmicb.2019.02939 | DOI Listing |
Protein Sci
February 2025
Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.
View Article and Find Full Text PDFActa Med Indones
October 2024
Division of Hepatobiliary, Department of Internal Medicine, Faculty of Medicine Universitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia..
Background: Direct acting antivirals (DAAs) have demonstrated remarkable efficacy, in achieving hepatitis C viral (HCV) elimination rates higher than 90%. One particular concern associated with treatment failure is the emergence of resistance associated substitutions (RASs) in the genome. The occurrence of RASs highlights the adaptability and resilience of the HCV.
View Article and Find Full Text PDFMicrob Pathog
January 2025
College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China. Electronic address:
Mastitis, generally caused by pathogenic microorganisms, is a serious disease in dairy farming. Staphylococcus aureus (S. aureus) is one of the main pathogens that induces mastitis in dairy cows.
View Article and Find Full Text PDFEnviron Res
January 2025
INRAE, University of Montpellier, LBE, Av. des Étangs, 11100 Narbonne, France.
Clarithromycin, a common antibiotic found in domestic wastewater, persists even after treatment and can transfer to soils when treated wastewater (TWW) is used for irrigation. This residual antibiotic may exert selection pressure, promoting the spread of antibiotic resistance. While Predicted No Effect Concentrations (PNECs) are used in liquid media to predict resistance risks, PNEC values for soils, especially for clarithromycin, are lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!