Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Root-to-shoot translocation of zinc (Zn) and cadmium (Cd) depends on the concentrations of both metals in the medium. A previous study on tobacco (Nicotiana tabacum) pointed to the contribution of NtZIP1, NtZIP2, NtZIP4 and NtIRT1-like in the regulation of this phenomenon. To learn more, Zn and Cd accumulation, root/shoot distribution and the expression of ZIP genes were investigated in the apical, middle and basal root parts.
Results: We show that Zn/Cd status-dependent root-shoot distribution of both metals was related to distinct metal accumulation in root parts. At low Zn and Cd in the medium, the apical part contained the highest metal level; at higher concentrations, the middle and basal parts were the major sink for excess metal. The above were accompanied by root part-specific expression pattern modifications of ZIPs (NtZIP1-like, NtZIP2, NtZIP4A/B, NtZIP5A/B, NtZIP5-like, NtZIP8, NtZIP11, NtIRT1, and NtIRT1-like) that fell into four categories with respect to the root part. Furthermore, for lower Zn/Cd concentrations changes were noted for NtZIP5A/B and NtZIP5-like only, but at higher Zn and Cd levels for NtZIP1-like, NtZIP5-like, NtZIP8, NtZIP11, NtIRT1, and NtIRT1-like. NtZIP1, here renamed to NtZIP5B, was cloned and characterized. We found that it was a zinc deficiency-inducible transporter involved in zinc and cadmium uptake from the soil solution primarily by the middle root part.
Conclusions: We conclude that regulation of the longitudinal distribution of Zn and Cd is highly specific, and that the apical, middle and basal root parts play distinct roles in Zn/Cd status-dependent control of metal translocation efficiency to shoots, including the stimulation of Zn translocation to shoots in the presence of Cd. These results provide new insight into the root part-specific unique role of NtZIP5B and other ZIP genes in the longitudinal distribution of zinc and cadmium and their contribution to the regulation of root-to-shoot translocation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6977228 | PMC |
http://dx.doi.org/10.1186/s12870-020-2255-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!