Neuromodulation plays a vital role in the prevention and treatment of neurological and psychiatric disorders. Neuromodulation's feasibility is a long-standing issue because it provides the necessity for neuromodulation to realize the desired purpose. A controllability analysis of neural dynamics is necessary to ensure neuromodulation's feasibility. Here, we present such a theoretical method by using the concept of controllability from the control theory that neuromodulation's feasibility can be studied smoothly. Firstly, networks of multiple coupled neural populations with different topologies are established to mathematically model complicated neural dynamics. Secondly, an analytical method composed of a linearization method, the Kalman controllable rank condition and a controllability index is applied to analyze the controllability of the established network models. Finally, the relationship between network dynamics or topological characteristic parameters and controllability is studied by using the analytical method. The proposed method provides a new idea for the study of neuromodulation's feasibility, and the results are expected to guide us to better modulate neurodynamics by optimizing network dynamics and network topology.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S012906572050001XDOI Listing

Publication Analysis

Top Keywords

neuromodulation's feasibility
20
analytical method
12
networks multiple
8
multiple coupled
8
coupled neural
8
neural populations
8
neural dynamics
8
network dynamics
8
controllability
6
method
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!