The first examples of organic-inorganic hybrid materials reinforced by transition-metal oxoclusters that exhibit shape memory properties, based on the covalent incorporation of zirconium-based inorganic building blocks, are reported. Methacrylate-functionalized zirconium oxoclusters Zr O (OMc) and [Zr O (OH) (OOCCH CH ) {OOCC(CH )=CH } ] , with the covalent incorporation in a butyl acrylate (BA)/polycaprolactone dimethacrylate (PCLDMA) copolymer and the noncovalent incorporation of [Zr O (OH) (OOCCH CH ) ] are focused upon herein. Shape recovery and fixity rates are studied to observe if the shape memory properties are preserved upon going from a simple copolymer to noncovalent or covalent-based hybrids. These rates display values higher than 90 %, which provides evidence that the oxocluster does not hinder the shape memory properties in the hybrid materials. The introduction of an inorganic phase and the progressively more stable interactions between organic and inorganic parts lead to an enhancement of the thermomechanical properties. The materials are characterized through FTIR spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and swelling tests. Dynamic-mechanical analyses are used to investigate whether the hybrid materials display thermally activated shape memory properties. The stability of the hybrid materials are evaluated by a combined spectroscopic approach based on FTIR, solid-state NMR, and X-ray absorption spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.201500339DOI Listing

Publication Analysis

Top Keywords

shape memory
20
hybrid materials
16
memory properties
16
materials reinforced
8
zirconium oxoclusters
8
covalent incorporation
8
[zr oocch
8
copolymer noncovalent
8
shape
6
materials
6

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

The paper presents a review of CNTs synthesis methods and their application as a functional filler to obtain polymer composites for various technical purposes for strain gauges, electrical heating, anti-static coatings, electrically conductive compounds, etc. Various synthesis methods allow CNTs with different morphology and structural properties to be created, which expands the possibilities of the application of such nanoscale structures. Polymers can provide such effects as 'shape memory' and self-repair of mechanical defects.

View Article and Find Full Text PDF

Contextual cues can be used to predict the likelihood of and reduce interference from salient distractors.

Atten Percept Psychophys

January 2025

Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.

Our attention can sometimes be disrupted by salient but irrelevant objects in the environment. This distractor interference can be reduced when distractors appear frequently, allowing us to anticipate their presence. However, it remains unknown whether distractor frequency can be learned implicitly across distinct contexts.

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Working memory (WM) is an evolving concept. Our understanding of the neural functions that support WM develops iteratively alongside the approaches used to study it, and both can be profoundly shaped by available tools and prevailing theoretical paradigms. Here, the organizers of the 2024 Working Memory Symposium-inspired by this year's meeting-highlight current trends and looming questions in WM research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!