Copper-Based Catalysts Supported on Highly Porous Silica for the Water Gas Shift Reaction.

Chempluschem

Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Complesso Universitario di Monserrato, s.s. 554 Bivio per Sestu, 09042, Monserrato CA, Italy.

Published: April 2016

Copper-based nanoparticles, supported on either a silica aerogel or cubic mesostructured silicas obtained by using two different synthetic protocols, were used as catalysts for the water gas shift reaction. The obtained nanocomposites were thoroughly characterised before and after catalysis through nitrogen adsorption-desorption measurements at -196 °C, TEM, and wide- and low-angle XRD. The samples before catalysis contained nanoparticles of copper oxides (either CuO or Cu O), whereas the formation of metallic copper nanoparticles, constituting the active catalytic phase, was observed either by using pre-treatment in a reducing atmosphere or directly during the catalytic reaction owing to the presence of carbon monoxide. A key role in determining the catalytic performances of the samples is played by the ability of different matrices to promote a high dispersion of copper metal nanoparticles. The best catalytic performances are obtained with the aerogel sample, which also exhibits constant carbon monoxide conversion values at constant temperature and reproducible behaviour after subsequent catalytic runs. On the other hand, in the catalysts based on cubic mesostructured silica, the detrimental effects related to sintering of copper nanoparticles are avoided only on the silica support, which is able to produce a reasonable dispersion of the copper nanophase.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.201500395DOI Listing

Publication Analysis

Top Keywords

water gas
8
gas shift
8
shift reaction
8
cubic mesostructured
8
copper nanoparticles
8
carbon monoxide
8
catalytic performances
8
dispersion copper
8
nanoparticles
5
copper
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!