Greenhouse farming is an agricultural management system that has demonstrated its efficiency in intensifying food production. These systems constitute a feasible alternative for ensuring food supply, which is one of the greatest challenges faced by humankind in the twenty-first century. Technology has been able to meet the challenges related to greenhouse farming in both contributing to overcoming its limitations, correcting adverse impacts and ensuring system sustainability. The objective of this article is to analyse the global research trends in greenhouse technology over the last two decades, in order to identify the main driving agents, the most outstanding research lines and possible gaps in the literature. Different methodologies have been used for the analysis; both quantitative and qualitative. The principal results show that there are different relevant lines of research related to different aspects of greenhouse farming: the use of water for irrigation, the design of the optimum structure of the greenhouse, conserving the soil in the best growing conditions, energy consumption of the system as a whole, climate control within the facility and pest control. The research is characterized by the being composed largely of ad hoc studies, which hinders the international collaboration between researchers and institutions. The research approach has shifted from being focused on increasing production and cost savings to aspects related to resource conservation and sustainability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013810 | PMC |
http://dx.doi.org/10.3390/ijerph17020664 | DOI Listing |
Sci Rep
December 2024
School of Economics and Management, China University of Geosciences, Beijing, 100083, People's Republic of China.
Since agriculture is a major source of greenhouse gas emissions, accurately calculating these emissions is essential for simultaneously addressing climate change and food security challenges. This paper explores the critical role of trade in transferring agricultural greenhouse gas (AGHG) emissions throughout global agricultural supply chains. We develop a detailed AGHG emission inventory with comprehensive coverage across a wide range of countries and emission sources at first.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
To obtain an effective bacterial biocontrol strain against the fungal pathogen , causing rubber tree red root rot disease, healthy rubber tree tissue from Baisha County, Hainan Province, was selected as the isolation source, and bacterial strains with strong antifungal effects against . were screened. The strain was identified by molecular biology, in vitro root segment tests, pot growth promotion tests, and genome detection.
View Article and Find Full Text PDFPlant Dis
December 2024
Universidad Autónoma de Occidente, CIENCIAS NATURALES Y EXACTAS , Carret. Internacional y Boulevard Macario Gaxiola, S/N, Los Mochis, Los Mochis, Sinaloa, Mexico, 81200.
Castor bean (Ricinus communis) is cultivated agriculturally for oil and ornamentally for its bright foliage and seed. Ornamental castor bean has naturalized in many areas of the world, including the state of Sinaloa, Mexico, where it is not planted commercially. In a survey conducted in 2019 in Sinaloa, wild castor bean was found widely affected by a foliar blight with symptoms similar to Alternaria ricini previously described in the United States (Stevenson 1945) and in the state of Chiapas, Mexico (López-Guillén et al.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Wageningen University & Research, 6700 AH Wageningen, the Netherlands.
Recent advances in our understanding of methanogenesis have led to the development of antimethanogenic feed additives (AMFA) that can reduce enteric methane (CH) emissions to varying extents, via direct targeting of methanogens, alternative electron acceptors, or altering the rumen environment. Here we examine current and new approaches used for the accounting (i.e.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
Tire wear particles (TWP) are emerging contaminants in the soil environment due to their widespread occurrence and potential threat to soil health. However, their impacts on soil biogeochemical processes remain unclear. Here, we investigated the effects of TWP at various doses and their leachate on soil respiration and denitrification using a robotized continuous-flow incubation system in upland soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!