The Soybean Transcription Factor Gene Confers Drought and Salt Resistances in Transgenic Plants.

Int J Mol Sci

Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.

Published: January 2020

Abiotic stresses, such as drought and salt, are major environmental stresses, affecting plant growth and crop productivity. Plant bZIP transcription factors (bZIPs) confer stress resistances in harsh environments and play important roles in each phase of plant growth processes. In this research, 15 soybean bZIP family members were identified from drought-induced de novo transcriptomic sequences of soybean, which were unevenly distributed across 12 soybean chromosomes. Promoter analysis showed that these 15 genes were rich in ABRE, MYB and MYC -acting elements which were reported to be involved in abiotic stress responses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that 15 genes could be induced by drought and salt stress. was significantly upregulated under stress conditions and thus was selected for further study. Subcellular localization analysis revealed that the GmbZIP2 protein was located in the cell nucleus. qRT-PCR results show that can be induced by multiple stresses. The overexpression of in and soybean hairy roots could improve plant resistance to drought and salt stresses. The result of differential expression gene analysis shows that the overexpression of in soybean hairy roots could enhance the expression of the stress responsive genes , , , and . These results indicate that soybean s played pivotal roles in plant resistance to abiotic stresses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013997PMC
http://dx.doi.org/10.3390/ijms21020670DOI Listing

Publication Analysis

Top Keywords

drought salt
16
abiotic stresses
8
plant growth
8
overexpression soybean
8
soybean hairy
8
hairy roots
8
plant resistance
8
soybean
7
stresses
5
plant
5

Similar Publications

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

Comparative analysis of the gene family in the whole-genome of five gramineous plants.

Front Plant Sci

December 2024

Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.

The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.

View Article and Find Full Text PDF

Two pepper subclass II SnRK2 genes positively regulate drought stress response, with differential responsiveness to abscisic acid.

Plant Physiol Biochem

January 2025

Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea. Electronic address:

Sucrose nonfermenting-1-related protein kinase 2 (SnRK2) intricately modulates plant responses to abiotic stresses and abscisic acid (ABA) signaling. In pepper genome, five SnRK2 genes with sequence homology to CaSnRK2.6 showed distinct expression patterns across various pepper organs and in response to treatments with ABA, drought, mannitol, and salt.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Analysis of the G-Protein Gene Family in Barley Under Abiotic Stresses.

Plants (Basel)

December 2024

Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.

Heterotrimeric G-proteins are fundamental signal transducers highly conserved in plant species, which play crucial roles in regulating plant growth, development, and responses to abiotic stresses. Identification of G-protein members and their expression patterns in plants are essential for improving crop resilience against environmental stresses. Here, we identified eight heterotrimeric G-protein genes localized on four chromosomes within the barley genome by using comprehensive genome-wide analysis.

View Article and Find Full Text PDF

A Comprehensive Analysis In Silico of Genes in Maize Revealed Their Potential Role in Response to Abiotic Stress.

Plants (Basel)

December 2024

Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs, School of Life Sciences, Nantong University, Nantong 226019, China.

β-ketoacyl-CoA synthase (KCS) enzymes play a pivotal role in plants by catalyzing the first step of very long-chain fatty acid (VLCFA) biosynthesis. This process is crucial for plant development and stress responses. However, the understanding of genes in maize remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!