High energy ball milling and subsequent high-pressure torsion method was carried out on nanocrystalline Mg powders catalyzed by 5 wt.% Nb₂O and 5 wt.% carbon nanotubes. In the present research two distinct milling routes were performed in order to reveal the influence of the processing conditions on the hydrogenation behavior of the investigated alloys. The hydrogen sorption behavior of the milled powders and the bulk disks was examined in a Sieverts'-type apparatus. Structural characterization of the catalyzed Mg powders and disks has been carried out by high-resolution transmission electron microscopy and X-ray diffraction.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.17871DOI Listing

Publication Analysis

Top Keywords

hydrogen sorption
8
ball milling
8
milling subsequent
8
subsequent high-pressure
8
high-pressure torsion
8
influence preparation
4
preparation conditions
4
conditions hydrogen
4
sorption mg-nb₂o-cnt
4
mg-nb₂o-cnt produced
4

Similar Publications

Uranium Extraction from Seawater via Hydrogen Bond Porous Organic Cages.

J Am Chem Soc

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.

Uranium (U), a high-performing, low-emission energy source, is driving sustainable economic growth. Herein, we synthesized two crystalline phases (HPOC-α and β) by an unreported amidoxime organic cage used for uranium capture. The revealed crystal structures and uranium adsorption test showed that accessible functional groups were essential to uranyl ions sorption.

View Article and Find Full Text PDF

2D and 3D porous coordination networks (PCNs) as exemplified by metal-organic frameworks, MOFs, have garnered interest for their potential utility as sorbents for molecular separations and storage. The inherent modularity of PCNs has enabled the development of crystal engineering strategies for systematic fine-tuning of pore size and chemistry in families of related PCNs. The same cannot be said about one-dimensional (1D) coordination polymers, CPs, which are understudied with respect to porosity.

View Article and Find Full Text PDF

Military bases and airports are often contaminated by per- and polyfluoroalkyl substances (PFAS) due to the repeated use of aqueous film forming foams (AFFFs) from decades of training exercises, equipment testing, and extinguishing of fuel- and solvent-based fires. Pump-and-treat systems combined with sorption processes are common ex situ remediation strategies; however, they can be expensive and may require decades of operation, particularly at sites where long-term diffusion and desorption of contaminants are the primary release processes. Alternatively, in situ chemical oxidation is an effective remediation strategy in which oxidants (e.

View Article and Find Full Text PDF

Zeolite-like algal biochar nanoparticles for enhanced antibiotics removal: Sorption mechanisms and theoretical calculations.

Colloids Surf B Biointerfaces

December 2024

National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.

In the study, Sargassum horneri (S. horneri) was used to create a novel zeolite-like algal biochar (KSBC). KSBC with doping of N, O, S, Al, and Si, displayed zeolite-like properties, including well-developed porosity, a high specific surface area (1137.

View Article and Find Full Text PDF

Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!