In recent year, vanadium-doped tribological films have become available as possible candidates for self-lubrication at high temperatures. In this work, quaternary Al-Cr-V-N films were deposited onto silicon wafer and WC-Co substrates by an unbalanced magnetron sputtering using high purity (99.99%) CrAl₂ and V targets with argon-nitrogen reactive gases. EPMA results revealed that vanadium atoms can incorporated from 0 to 13 at.% into the films. The maximum hardness value was ~32 GPa at vanadium content of 7.1 at.% in the Al-Cr-V-N films. The high-temperature tribometer was used to analysis the friction characteristics of the films with elevated temperature. As a result of the high temperature friction test after heating up to 700 °C, the average friction coefficient decreased from 0.62 to 0.35 with increasing of vanadium contents in the Al-Cr-V-N films. It is concluded that the reduction of the friction coefficient is attributed to the formation of V₂O, which is a Magnéli phase that acts as a lubrication at high temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.17606DOI Listing

Publication Analysis

Top Keywords

al-cr-v-n films
16
high temperature
8
friction coefficient
8
films
7
friction
5
vanadium
4
vanadium addition
4
addition high-temperature
4
high-temperature friction
4
friction behavior
4

Similar Publications

In recent year, vanadium-doped tribological films have become available as possible candidates for self-lubrication at high temperatures. In this work, quaternary Al-Cr-V-N films were deposited onto silicon wafer and WC-Co substrates by an unbalanced magnetron sputtering using high purity (99.99%) CrAl₂ and V targets with argon-nitrogen reactive gases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!