Background: Lung adenocarcinoma (LAD) is a highly aggressive malignant tumor which threatens the health and life of the population. Long non-coding RNA X-inactive specific transcript (XIST) and mouse double minute clone 2 (MDM2) are connected with the tumorigenesis of LAD. Nevertheless, whether MDM2 is regulated by XIST has not previously been reported in LAD.

Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expression of XIST, microRNA-363-3p (miR-363-3p) and MDM2 in LAD tissues and cells. The proliferation, migration, invasion and apoptosis of LAD cells were determined by 3-(4, 5-dimethylthiazol-2-YI)-2, 5-diphenyltetrazolium bromide (MTT), transwell or flow cytometry assay, respectively. MDM2 protein level was detected using western blot analysis. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pulldown assay were performed to determine the interaction among XIST, miR-363-3p and MDM2. A xenograft tumor model was constructed to validate the effect of XIST on LAD cells in vivo.

Results: We found that XIST and MDM2 were remarkably elevated while miR-363-3p was reduced in LAD tissues and cells. Both XIST and MDM2 downregulation restrained proliferation, migration and invasion, and facilitated apoptosis of LAD cells in vitro. Importantly, XIST bound to miR-363-3p to modulate MDM2 expression in LAD cells. Moreover, miR-363-3p knockdown or MDM2 elevation reversed the effects of XIST downregulation on the proliferation, migration, invasion and apoptosis of LAD cells. Furthermore, XIST knockdown constrained tumor growth on LAD cells in vivo.

Conclusions: XIST knockdown repressed proliferation, migration and invasion, and accelerated apoptosis of LAD cells by downregulating MDM2 expression via binding to miR-363-3p.

Key Points: Significant findings of the study XIST and MDM2 were abnormally enhanced in LAD tissues and cells. Both downregulation of XIST and MDM2 repressed proliferation, migration and invasion, and boosted apoptosis of LAD cells in vitro. XIST bound to miR-363-3p to regulate MDM2 expression in LAD cells. Downregulation of XIST impeded tumor growth on LAD cells in vivo. What this study adds This study confirmed that XIST was a potential target for inhibiting the development of LAD, and affords a possible strategy for the treatment of LAD in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049521PMC
http://dx.doi.org/10.1111/1759-7714.13310DOI Listing

Publication Analysis

Top Keywords

lad cells
40
proliferation migration
20
migration invasion
20
apoptosis lad
20
xist
17
lad
17
mdm2 expression
16
xist mdm2
16
mdm2
14
cells
13

Similar Publications

To investigate the functional role of S100A4 in advanced colorectal carcinoma (Ad-CRC) and locally advanced rectal carcinoma (LAd-RC) receiving neoadjuvant chemoradiotherapy (NCRT). We analyzed histopathological and immunohistochemical sections from 150 patients with Ad-CRC and 177 LAd-RC patients treated with NCRT. S100A4 knockout (KO) HCT116 cells were also used.

View Article and Find Full Text PDF

Background: In the diagnosis of linear IgA bullous dermatosis (LABD), detection of IgA at the epidermal basement membrane zone and circulating IgA autoantibodies are essential. The disease has two subtypes, lamina lucida-type and sublamina densa-type, with 120 kDa LAD-1 and 97 kDa LABD97 as major autoantigens for lamina lucida-type. Normal human epidermal keratinocytes (NHEK) and HaCaT cells are widely used for immunoblotting (IB) in the diagnosis process, but they do not provide high sensitivity and semiquantitative analysis.

View Article and Find Full Text PDF

Purpose: Intermittent hypoxia (IH), a defining feature of obstructive sleep apnea (OSA), is associated with heart damage and linked to transient receptor potential canonical channel 5 (TRPC5). Nonetheless, the function of TRPC5 in OSA-induced cardiac injury remains uncertain. For this research, we aimed to explore the role and potential mechanism of TRPC5 in cardiomyocyte injury induced by intermittent hypoxia.

View Article and Find Full Text PDF

The predictive value of monocyte count to high-density lipoprotein cholesterol ratio combined with left atrial diameter for post-radiofrequency ablation recurrence of paroxysmal atrial fibrillation in patients.

J Cardiothorac Surg

December 2024

Department of Cardiovascular Medicine, Deyang People's Hospital, No. 173, Section 1, Taishan North Road, Jingyang District, Deyang, Sichuan Province, 618000, China.

Background: Paroxysmal atrial fibrillation (PAF) usually recurs after radiofrequency ablation (RFA). This study probed the predictive value of monocyte count to high-density lipoprotein cholesterol (HDL-C) ratio (MHR) with left atrial diameter (LAD) for post-RFA recurrence in PFA patients.

Methods: Totally 210 RFA-treated PAF patients were selected and assigned into Recurrence and Non-Recurrence groups, with clinical baseline data recorded.

View Article and Find Full Text PDF

The promise of injection of extracellular matrix (ECM) from animal hearts as a treatment of myocardial ischemia has been limited by immune reactions and harsh ECM-damaging extraction procedures. We developed a novel method to produce lab-grown human 3D acellular ECM particles from human mesenchymal stem cells (MSCs) to mitigate product variability, immunogenicity, and preserve ECM architecture. We hypothesized that intramyocardial injection (I/M) of this novel ECM (dia ~200 microns) would improve cardiac function in a post-myocardial infarction (MI) murine model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!