Manganese oxide nanoparticles (MnO NPs) have been suggested to possess several enzyme-like activities. However, studies often used either color change or fluorescence to determine the catalytic activity. Despite the simplicity and sensitivity of these probes, these methods may give distracting artifacts or not reflect the catalytic activities in biological systems. To address this issue, herein, we used electron spin resonance (ESR) spectroscopy, a technique proven effective in identifying and quantifying the free radicals produced/scavenged in nanomaterial-catalyzed reactions, to systematically evaluate the catalytic activities of three MnO NPs (MnO, MnO, and MnO NPs) towards biologically relevant antioxidants (ascorbate and glutathione (GSH)) and reactive oxygen species (ROS) (hydrogen peroxide (HO), superoxide anion, and hydroxyl radical). We found that all three MnO NPs possess both pro- and anti-oxidant activities, including oxidase-, catalase-, and superoxide dismutase (SOD)-like activities but without peroxidase-like or hydroxyl radical scavenging activity. In addition, there are differences among these MnO NPs in their catalytic activities towards different reactions. MnO shows the strongest ascorbate oxidation activity, followed by MnO and MnO, while MnO shows the strongest oxidation efficiency towards GSH compared to MnO and MnO. In the catalyzed decomposition of HO, MnO NPs show higher efficiency in the generation of molecular oxygen than MnO or MnO. Cellular studies indicate that all three MnO NPs induced concentration-dependent decreases in the cell viability, with MnO > MnO > MnO. At lower concentrations (<100 μM), consistent with the enzyme-like activities detected in solution, all three NPs significantly decreased HO-induced cytotoxicity in Caco-2 cells. Our study determined the multi-enzymatic activities of MnO NPs and exhibited differences among MnO NPs of different valences in their enzyme-like activities and their biological implications; these results provide valuable information for safe and efficient applications of MnO NPs as ROS-scavenging biomedical nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9tb02524c | DOI Listing |
J Colloid Interface Sci
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China; Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China. Electronic address:
Seawater splitting is increasingly recognized as a promising technique for hydrogen production, while the lack of good electrocatalysts and detrimental chlorine chemistry may hinder further development of this technology. Here, the interfacial engineering of manganese dioxide nanoparticles decorated on NiFe layered double hydroxide supported on nickel foam (MnO@NiFe LDH/NF) is reported, which works as a robust catalyst for alkaline seawater oxidation. Density functional theory calculations and experiment findings reveal that MnO@NiFe LDH/NF can selectively enrich OH and repel Cl in oxygen evolution reaction (OER).
View Article and Find Full Text PDFSmall
January 2025
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan.
Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.
View Article and Find Full Text PDFJ Anim Sci
January 2025
University of Reading, School of Agriculture, Policy and Development, Earley gate, RG6 6EU Reading, United Kingdom.
This study investigated the effects of different protein sources on feed intake, nutrient, and energy utilization, growth performance, and enteric methane (CH4) emissions in growing beef cattle, also evaluated against a pasture-based diet. Thirty-two Holstein × Angus growing beef were allocated to four dietary treatments: a total mixed ration (TMR) including solvent-extracted soybean meal as the main protein source (SB; n = 8), TMR with local brewers' spent grains (BSG; n = 8), TMR with local field beans (BNS; n = 8), and a diet consisting solely of fresh-cut Italian ryegrass (GRA; n = 8). Every four weeks, animals were moved to digestibility stalls within respiration chambers to measure nutrient intakes, energy and nitrogen (N) utilization, and enteric CH4 emissions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!