We introduce the synthesis of hybrid nanostructures comprised of ZnO nanocrystals (NCs) decorating nanosheets and nanowires (NWs) of MoS prepared by atomic layer deposition (ALD). The concentration, size, and surface-to-volume ratio of the ZnO NCs can be systematically engineered by controlling both the number of ZnO ALD cycles and the properties of the MoS substrates, which are prepared by sulfurizing ALD MoO. Analysis of the chemical composition combined with electron microscopy and synchrotron X-ray techniques as a function of the number of ZnO ALD cycles, together with the results of quantum chemical calculations, help elucidate the ZnO growth mechanism and its dependence on the properties of the MoS substrate. The defect density and grain size of MoS nanosheets are controlled by the sulfurization temperature of ALD MoO, and the ZnO NCs in turn nucleate selectively at defect sites on MoS surface and enlarge with increasing ALD cycle numbers. At higher ALD cycle numbers, the coalescence of ZnO NCs contributes to an increase in areal coverage and NC size. Additionally, the geometry of the hybrid structures can be tuned by changing the dimensionality of the MoS, by employing vertical NWs of MoS as the substrate for ALD ZnO NCs, which leads to improvement of the relevant surface-to-volume ratio. Such materials are expected to find use in newly expanded applications, especially those such as sensors or photodevices based on a p-n heterojunction which relies on coupling transition-metal dichalcogenides with NCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b07467DOI Listing

Publication Analysis

Top Keywords

zno ncs
16
synthesis hybrid
8
mos
8
atomic layer
8
layer deposition
8
zno
8
nws mos
8
ald
8
surface-to-volume ratio
8
number zno
8

Similar Publications

Introduction: Green tea is a medicinal beverage extracted from the plant Camellia sinensis. Antioxidants that exist naturally can be extracted as pure compounds from their parent materials for nutraceutical and medicinal applications. The present study aims to assess the antioxidant activity of Zinc oxide-titanium dioxide nano-composites (ZnO-TiO2 NCs) containing green tea extract.

View Article and Find Full Text PDF

Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells.

Mar Drugs

December 2024

Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.

The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.

View Article and Find Full Text PDF

Unconventional Heterobidentate Coordination of 4-Hydroxypyridine Leading to Remarkably Strong Second-Harmonic Generation in Zn(CHNO).

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.

Herein, we report an unconventional heterobidentate coordination mode of conventional 4-hydroxypyridine ligand in a novel compound Zn(CHNO). The strong heterobidentate coordination interactions between Zn and 4-hydroxypyridine ligands promote a uniform alignment of the polarization of each [ZnON] tetrahedral building unit, resulting in remarkably strong second-harmonic generation (SHG) with an intensity that is the largest among all UV-transparent Zn-containing metal-organic compounds reaching 13.6×KDP.

View Article and Find Full Text PDF

The goal of the present work is to create ZnO/NiO nanocomposites (NCs) for the photocatalytic destruction of organic contaminants using the co-precipitation technique. To investigate physiochemical characteristics, FT-IR, UV visible spectroscopy, SEM, and XRD were used. The ZnO hexagonal phase and the NiO cubic phase in the ZnO/NiO NCs were verified by the diffraction pattern.

View Article and Find Full Text PDF

Interface engineering is the key to optimizing optoelectronic device performance, addressing challenges like reducing potential barriers, passivating interface traps, and controlling recombination of charges. Metal fluorides such as lithium fluoride are employed in interface modification within organic devices due to their strong dipole characteristics but carry health risks, high processing costs, and minimal impact on interface traps in organic electronics. Hence, this study investigates alternative metal chloride (MC) nanocrystals (sodium, cesium, rubidium, and potassium chlorides) that exhibit a strong dipole moment and are readily processable with the aim of reducing the influence of interface traps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!