Transcriptomic Analysis of the Grapevine LEA Gene Family in Response to Osmotic and Cold Stress Reveals a Key Role for VamDHN3.

Plant Cell Physiol

Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China.

Published: April 2020

Late embryogenesis abundant (LEA) proteins comprise a large family that plays important roles in the regulation of abiotic stress, however, no in-depth analysis of LEA genes has been performed in grapevine to date. In this study, we analyzed a total of 52 putative LEA genes in grapevine at the genomic and transcriptomic level, compiled expression profiles of four selected (V. amurensis) VamLEA genes under cold and osmotic stresses, and studied the potential function of the V. amurensis DEHYDRIN3 (VamDHN3) gene in grapevine callus. The 52 LEA proteins were classified into seven phylogenetic groups. RNA-seq and quantitative real-time PCR results demonstrated that a total of 16 and 23 VamLEA genes were upregulated under cold and osmotic stresses, respectively. In addition, overexpression of VamDHN3 enhanced the stability of the cell membrane in grapevine callus, suggesting that VamDHN3 is involved in osmotic regulation. These results provide fundamental knowledge for the further analysis of the biological roles of grapevine LEA genes in adaption to abiotic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199170PMC
http://dx.doi.org/10.1093/pcp/pcaa004DOI Listing

Publication Analysis

Top Keywords

lea genes
12
grapevine lea
8
lea proteins
8
abiotic stress
8
vamlea genes
8
cold osmotic
8
osmotic stresses
8
grapevine callus
8
grapevine
6
lea
6

Similar Publications

Overexpression of from Bunge Enhanced Drought and Salt Tolerance by Improving ROS-Scavenging Capability.

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China.

() genes play a crucial role in the response to abiotic stress and are important target genes for research on plant stress tolerance mechanisms. Bunge is a promising candidate tree species for investigating the tolerance mechanism of woody plants against abiotic stress. In our previous study, was identified as being associated with seed drought tolerance.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels.

View Article and Find Full Text PDF
Article Synopsis
  • PAX2 is identified as an endometrial tumor suppressor frequently inactivated through a unique epigenetic mechanism, rather than promoter hypermethylation.
  • In 80% of endometrial cancers, the loss of PAX2 is linked to transcriptional silencing, which alters chromatin features, contributing to cancer development.
  • The research highlights new pathways for understanding endometrial cancer origins, potentially influencing future diagnosis and treatment approaches.
View Article and Find Full Text PDF
Article Synopsis
  • Chronic exposure to environmental chemicals (ECs) affects human health, leading to non-communicable diseases, and studying these effects in real-world conditions requires animal models that mimic such exposure.
  • Research using sheep exposed to biosolids found metabolic changes in offspring, including altered liver gene expression and sex-specific effects on metabolism.
  • The study identified significant differences in gene expression and liver function, particularly in male lambs, suggesting that prenatal exposure to low-dose mixtures of ECs disrupts normal metabolic processes and sexual dimorphism in liver function.
View Article and Find Full Text PDF

Late Embryogenesis Abundant (LEA) proteins are extensively distributed among higher plants and are crucial for regulating growth, development, and abiotic stress resistance. However, comprehensive data regarding the LEA gene family in Ipomoea species remains limited. In this study, we conducted a genome-wide comparative analysis across seven Ipomoea species, including sweet potato (I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!