Leucine-rich repeat neuronal protein-4 (LRRN4 or NLRR4) has been identified as a new member of LRRN family, which is a group of proteins that contain leucine-rich repeat domains and functioned as regulators in a variety of pathologic processes including cardiac remodeling. However, the exact pattern of expression and function of LRRN4 in the human hearts is still unclear. In our study, the western blot test and real-time PCR were performed to detect the LRRN4 level in hearts of patients with dilated cardiomyopathy (DCM), ischemia heart disease (IHD) hearts respectively. Interestingly, the LRRN4 was highly expressed in donor hearts, but significantly reduced in hearts with DCM. While a comparable level of expression was detected in the IHD hearts when compared with donor hearts. Immunohistochemistry assay showed that LRRN4 was particularly expressed in cardiomyocytes and responsible for its decreased expression in the DCM hearts. Furthermore, we found LRRN4 was expressed in the ventricular cardiomyocytes of mice and apparently reduced after pressure overload treatment in the wild type mice. Therefore, our hitherto unrecognized findings provided the first evidence that the highly expressed LRRN4 is critical for maintaining morphology and function of heart. In addition to that, since its expression level decreased in DCM hearts but not IHD hearts, which indicated LRRN4 might be a therapeutic target clinically for DCM disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965904 | PMC |
Immunol Rev
March 2025
Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, Virginia, USA.
A robust innate immune response is essential in combating viral pathogens. However, it is equally critical to quell overzealous immune signaling to limit collateral damage and enable inflammation resolution. Pattern recognition receptors are critical regulators of these processes.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Geriatric Rehabilitation, Jiangbin Hospital, Nanning, China.
Background: Programmed cell death plays an important role in neuronal injury and death after ischemic stroke (IS), leading to cellular glucose deficiency. Glucose deficiency can cause abnormal accumulation of cytotoxic disulfides, resulting in disulfidptosis. Ferroptosis, apoptosis, necroptosis, and autophagy inhibitors cannot inhibit this novel programmed cell death mechanism.
View Article and Find Full Text PDFGene
January 2025
School of Public Health, North China University of Science and Technology, Tangshan, China; College of Life Sciences, North China University of Science and Technology, Tangshan, China; Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, China. Electronic address:
Background: Genome-wide association studies (GWAS) have identified susceptibility loci for colorectal cancer (CRC), but the underlying mechanisms remain unclear. This study investigates functional genetic variants in promoter regions of Leucine Rich Repeat Containing 6 (LRRC6) at 8q24 and Myotubularin Related Protein 10 (MTMR10) at 15q13.3 and their association with CRC susceptibility.
View Article and Find Full Text PDFJ Med Chem
January 2025
Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India.
Nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) form an inflammasome by assembling with apoptosis-associated speck-like protein containing a CARD (ASC) and procaspase-1 that plays a pivotal role in various neurodegenerative diseases such as Alzheimer's and Parkinson diseases. We designed native peptides derived from the PYDs of NLRP3 and ASC based on their interfacial interaction to inhibit NLRP3 inflammasome formation. Screening revealed that , derived from NLRP3, inhibits inflammasome activation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!