Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aimed to investigate the neuroprotective properity of staurosporine (STS) and identify the neuroprotective mechanism of staurosporine in mouse retina ganglion cell after optic nerve injured. Mice (C57BL/6) were anaesthetised with a mixture of 5 mg/kg xylazine hydrochloride and 40 mg/kg tiletamine/zolazepam (Zoletil®). Optic nerves of the mice were crushed (Templeton JP et al., 2012). With micro-forceps, the bulbar conjunctiva was grasped and retracted, rotating the globe nasally. The exposed optic nerve was grasped approximately 1-3 mm from the globe with Dumont #N7 cross-action forceps for 10 s. One day after crushing, intravitreal injections of STS (500 nM) were administered using a Narishige IM-300 air pressure regulator. For analysing the change in ganglion cell number, the mice were allowed to live for 30 days, after which they were killed and the ganglion cell survival was assessed. A significant and marked loss of fluorescent spots was found after 30 days, with fewer 4',6-diamidino-2-phenylindole (DAPI)-expressing retinal ganglion cells (RGCs) remaining in the injured and phosphate buffered saline (PBS)-injected group than those in non-injured PBS-injected controls. However, RGC cell numbers dramatically increased in the STS intravitreal injection group. Moreover, degradation of nerve fibre (NF) was markedly reduced in the STS injection group compared with the injured and PBS-injected group by inducing astrocyte expression of Bcl-2. Our data suggested that injection of STS into the vitreous may have a potential therapeutic effect in retinal diseases such as glaucoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965234 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!