Background And Aim: Bone marrow mesenchymal stem cells (MSC) are receiving increasing attention for skin wound repair. However, the specific mechanisms underlying MSC-mediated improvement in wound healing have not been fully elucidated. This study aims at testing whether epidermal growth factor (EGF) can promote MSC-mediated wound healing and hair follicle regeneration.
Methods: Excisional wounds in rats were transplanted with different collagen-chitosan scaffolds: control, MSC, and MSC + EGF. Regenerated tissues were harvested 1, 3, or 5 weeks following transplantation, stained with hematoxylin and eosin and evaluated microscopically. The formation of sebaceous glands was examined by Oil red staining and the regeneration of hair follicles by immunohistochemical staining and Western blot to test the expression of hair follicle-specific factors.
Results: Gross observations showed that the wounds were much smaller and the hairs grew faster in the MSC + EGF group. Histological analysis demonstrated that there were more hair follicles, sebaceous glands, and newly formed blood vessels in the MSC + EGF group compared with that in the MSC group. In addition, oil red staining showed that MSCs + EGF induced sebaceous gland regeneration. Finally, immunohistochemistry and western blot revealed that MSCs + EGF increased the expression of hair follicle-specific factors.
Conclusion: MSCs alone cannot achieve the regeneration of hair follicles and EGF can promote MSC-mediated wound healing and hair follicle regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965296 | PMC |
Clin Exp Pharmacol Physiol
March 2025
Department of Endocrinology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China.
Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Nanomedicine and Advanced Technologies, California Innovations Corporation, San Diego, CA 92037, USA.
In the original publication [...
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
In the original publication, there was a mistake in Figure 4 as published [...
View Article and Find Full Text PDFPharmaceutics
January 2025
Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.
View Article and Find Full Text PDFPharmaceutics
January 2025
University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!