Seasonal, Lunar and Tidal Influences on Habitat Use of Indo-Pacific Humpback Dolphins in Beibu Gulf, China.

Zool Stud

Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.

Published: January 2018

Cetacean habitat use based on different environmental phases varies between species and geographies, and little is known about Pacific humpback dolphin habitat use in the Beibu Gulf. Here we aimed to identify seasonal, lunar and tidal influences on the spatial use of Beibu humpback dolphins based on two parameters: water depth and distance to an estuary. The ANOVA test indicated that habitat use was influenced by seasons and tidal phases, but not lunar phases. The humpback dolphins utilized shallow areas near an estuary throughout the wet season and high tides, and moved toward deeper water during the dry season and low tides. This habitat preference is likely synchronized with prey seasonal and tidal movements. The wet season and high tides bring abundant prey resources and increase accessibility to inshore shallow waters for humpback dolphins. The present study provides new information on regular habitat use by Indo- Pacific humpback dolphins, which is crucial for developing effective conservation strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517742PMC
http://dx.doi.org/10.6620/ZS.2018.57-01DOI Listing

Publication Analysis

Top Keywords

humpback dolphins
20
seasonal lunar
8
lunar tidal
8
tidal influences
8
beibu gulf
8
pacific humpback
8
wet season
8
season high
8
high tides
8
habitat
6

Similar Publications

Characteristics of neutrophil chemotaxis in bottlenose dolphin (Tursiops truncatus).

Vet Immunol Immunopathol

January 2025

Laboratory of Preventive Veterinary Medicine and Animal Health, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa-ken 252-0880, Japan. Electronic address:

Cetaceans have adapted to aquatic life by evolving various anatomic and physiologic traits, but biological defense mechanisms specific to aquatic mammals that protect against pathogenic microorganisms in the aquatic environment have not been elucidated. In this study, we investigated the migration of polymorphonuclear leukocytes in bottlenose dolphins in response to various chemotactic factors and compared the migration response with that of terrestrial animals such as cows and humans to characterize biological defense mechanisms unique to cetaceans. Bottlenose dolphin neutrophils showed strong chemotactic activity toward zymosan-activated serum and recombinant human interleukin-8 but no chemotaxis toward N-formyl-methionyl-leucyl-phenylalanine or leukotriene B at any concentration examined.

View Article and Find Full Text PDF

Advances in waste-derived functional materials for PFAS remediation.

Biodegradation

January 2025

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia.

Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally.

View Article and Find Full Text PDF

The development of deep convolutional generative adversarial network to synthesize odontocetes' clicks.

J Acoust Soc Am

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.

Odontocetes are capable of dynamically changing their echolocation clicks to efficiently detect targets, and learning their clicking strategy can facilitate the design of man-made detecting signals. In this study, we developed deep convolutional generative adversarial networks guided by an acoustic feature vector (AF-DCGANs) to synthesize narrowband clicks of the finless porpoise (Neophocaena phocaenoides sunameri) and broadband clicks of the bottlenose dolphins (Tursiops truncatus). The average short-time objective intelligibility (STOI), spectral correlation coefficient (Spe-CORR), waveform correlation coefficient (Wave-CORR), and dynamic time warping distance (DTW-Distance) of the synthetic clicks were 0.

View Article and Find Full Text PDF

Rationale: Wildlife scientists are quantifying steroid hormones in a growing number of tissues and employing novel methods that must undergo validation before application. This study tested the accuracy and precision of liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for use on blubber samples from short-finned pilot whales (Globicephala macrorhynchus). We expanded upon a method for corticosteroid quantification by adding analytes and optimizing internal standard (IS) application.

View Article and Find Full Text PDF

Identification of Two Common Bottlenose Dolphin () Ecotypes in the Guadeloupe Archipelago, Eastern Caribbean.

Animals (Basel)

January 2025

Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE-PSL, Université des Antilles, 75005 Paris, France.

The common bottlenose dolphin () exhibits significant intraspecific diversity globally, with distinct ecotypes identified in various regions. In the Guadeloupe archipelago, the citizen science NGO OMMAG has been monitoring these dolphins for over a decade, documenting two distinct morphotypes. This study investigates whether these morphotypes represent coastal and oceanic ecotypes, which have not been previously identified in the region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!