Background: The fiddler crab (Alcock, 1900) (Crustacea: Brachyura: Ocypodidae) is distributed in the northern coasts of the Arabian Sea (Pakistan, Iran, Iraq, and Kuwait). Its typical habitat is on high intertidal areas with higher salinity, which might restrict its distribution, especially within the Persian Gulf. The purpose of the present phylogeographicstudy is to understand whether the Strait of Hormuz acts as a barrier to the gene flow of this species.

Results: The genetic analyses of the mitochondrial 16S rRNA, cytochrome oxidase subunit I (COI), and control region (CR) of specimens from various localities showed that there was no genetic differentiation between the populations inside and outside of the Persian Gulf.

Conclusions: We conclude that the narrow Strait of Hormuz does not form a barrier for the larval dispersal in this species. Its restricted distribution in the northern Arabian Sea may instead be associated with its preference for higher salinity sediments present in the coasts of thisregion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661292PMC
http://dx.doi.org/10.1186/s40555-014-0078-3DOI Listing

Publication Analysis

Top Keywords

arabian sea
12
fiddler crab
8
crab alcock
8
alcock 1900
8
1900 crustacea
8
crustacea brachyura
8
brachyura ocypodidae
8
higher salinity
8
strait hormuz
8
population genetics
4

Similar Publications

Comparative study of the variability of the phytoplankton biomass in two upwelling zones of the western Arabian Sea from 2003 to 2020.

Mar Pollut Bull

January 2025

National Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China. Electronic address:

This study investigates the monthly and interannual variations in chlorophyll-a (Chl-a) concentrations in the Oman and Somalia upwelling zones using satellite data from 2003 to 2020. Bivariate Wavelet Coherence (BWC) and Multiple Wavelet Coherence (MWC) analyses were applied to identify the key factors influencing Chl-a concentration changes. The results show that Ekman pumping and Ekman transport induced by the southwest monsoon are crucial for phytoplankton blooms along the coast and offshore in both upwelling zones.

View Article and Find Full Text PDF

The Arabian/Persian Gulf, a marginal sea of the northern Indian Ocean, has been significantly impacted by human activities, leading to a rise in harmful algal blooms (HABs). This study investigates the summer blooming of an ichthyotoxic phytoflagellate Chattonella marina var. antiqua and associated fish-kill in Kuwaiti waters, connecting the events to a previous dust storm and eutrophication status in the coastal waters of the Northern Arabian Gulf (NAG).

View Article and Find Full Text PDF
Article Synopsis
  • Brown algae show great potential as a nutritious food source with significant levels of protein, carbohydrates, and minerals that can help meet dietary needs.
  • Analysis of eight species from India's coasts revealed high amounts of essential minerals like calcium, iron, and magnesium, which contribute to the Recommended Dietary Allowance.
  • The study also found strong antioxidant properties in these algae, suggesting they may help reduce chronic disease risk and enhance overall health.
View Article and Find Full Text PDF

Bioluminescence is a functional property used by many marine organisms for multilateral communications. In the Arabian Sea, the dinoflagellate Noctiluca scintillans (Macartney) Kofoid and Swezy, 1921, contributes gradually to the bioluminescent potential (BP) of the phytoplankton community. Experiments, field sampling, and remote sensing were employed, to estimate the seasonal variation of the BP and the abundance of cells in the northwestern Arabian Sea.

View Article and Find Full Text PDF

This study investigated major contributors of the particulate organic matter (POM) using stable isotope ratios of particulate organic carbon (δC) and its relationship with phytoplankton composition during three seasons across six coast-offshore transects in the eastern Arabian Sea (EAS). Results revealed significant spatiotemporal variations, with elevated δC in coastal waters during the winter and summer monsoon (-22.40 ± 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!