Background: The fiddler crab (Alcock, 1900) (Crustacea: Brachyura: Ocypodidae) is distributed in the northern coasts of the Arabian Sea (Pakistan, Iran, Iraq, and Kuwait). Its typical habitat is on high intertidal areas with higher salinity, which might restrict its distribution, especially within the Persian Gulf. The purpose of the present phylogeographicstudy is to understand whether the Strait of Hormuz acts as a barrier to the gene flow of this species.
Results: The genetic analyses of the mitochondrial 16S rRNA, cytochrome oxidase subunit I (COI), and control region (CR) of specimens from various localities showed that there was no genetic differentiation between the populations inside and outside of the Persian Gulf.
Conclusions: We conclude that the narrow Strait of Hormuz does not form a barrier for the larval dispersal in this species. Its restricted distribution in the northern Arabian Sea may instead be associated with its preference for higher salinity sediments present in the coasts of thisregion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661292 | PMC |
http://dx.doi.org/10.1186/s40555-014-0078-3 | DOI Listing |
Mar Pollut Bull
January 2025
National Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China. Electronic address:
This study investigates the monthly and interannual variations in chlorophyll-a (Chl-a) concentrations in the Oman and Somalia upwelling zones using satellite data from 2003 to 2020. Bivariate Wavelet Coherence (BWC) and Multiple Wavelet Coherence (MWC) analyses were applied to identify the key factors influencing Chl-a concentration changes. The results show that Ekman pumping and Ekman transport induced by the southwest monsoon are crucial for phytoplankton blooms along the coast and offshore in both upwelling zones.
View Article and Find Full Text PDFSci Total Environ
January 2025
Coastal and Marine Resources Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya 20001, Kuwait.
The Arabian/Persian Gulf, a marginal sea of the northern Indian Ocean, has been significantly impacted by human activities, leading to a rise in harmful algal blooms (HABs). This study investigates the summer blooming of an ichthyotoxic phytoflagellate Chattonella marina var. antiqua and associated fish-kill in Kuwaiti waters, connecting the events to a previous dust storm and eutrophication status in the coastal waters of the Northern Arabian Gulf (NAG).
View Article and Find Full Text PDFHeliyon
January 2025
FRHPHM Division, ICAR-Central Institute of Fisheries Education, Yari Road Campus, Versova, Mumbai, 400 061, India.
Luminescence
January 2025
A.O. Kovalevsky Institute of Biology of the Southern Seas, Sevastopol, Russian Federation.
Bioluminescence is a functional property used by many marine organisms for multilateral communications. In the Arabian Sea, the dinoflagellate Noctiluca scintillans (Macartney) Kofoid and Swezy, 1921, contributes gradually to the bioluminescent potential (BP) of the phytoplankton community. Experiments, field sampling, and remote sensing were employed, to estimate the seasonal variation of the BP and the abundance of cells in the northwestern Arabian Sea.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Centre for Marine Living Resources and Ecology (CMLRE), Kochi, Kerala, India; Central University of Kerala (CUK), Kasargod, Kerala, India.
This study investigated major contributors of the particulate organic matter (POM) using stable isotope ratios of particulate organic carbon (δC) and its relationship with phytoplankton composition during three seasons across six coast-offshore transects in the eastern Arabian Sea (EAS). Results revealed significant spatiotemporal variations, with elevated δC in coastal waters during the winter and summer monsoon (-22.40 ± 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!