Multicellular organisms have evolved sophisticated mechanisms for responding to various developmental, environmental and physical stimuli by regulating transcription. The correlation of distribution of RNA Polymerase II (RNA Pol II) with transcription is well established in higher metazoans, however genome-wide information about its distribution in early metazoans, such as Hydra, is virtually absent. To gain insights into RNA Pol II-mediated transcription and chromatin organization in Hydra, we performed chromatin immunoprecipitation (ChIP)-coupled high-throughput sequencing (ChIP-seq) for RNA Pol II and Histone H3. Strikingly, we found that Hydra RNA Pol II is uniformly distributed across the entire gene body, as opposed to its counterparts in bilaterians such as human and mouse. Furthermore, correlation with transcriptome data revealed that the levels of RNA Pol II correlate with the magnitude of gene expression. Strikingly, the characteristic peak of RNA Pol II pause typically observed in bilaterians at the transcription start sites (TSSs) was not observed in Hydra. The RNA Pol II traversing ratio in Hydra was found to be intermediate to yeast and bilaterians. The search for factors involved in RNA Pol II pause revealed that RNA Pol II pausing machinery was most likely acquired first in Cnidaria. However, only a small subset of genes exhibited the promoter proximal RNP Pol II pause. Interestingly, the nucleosome occupancy is highest over the subset of paused genes as compared to total Hydra genes, which is another indication of paused RNA Pol II at these genes. Thus, this study provides evidence for the molecular basis of RNA Pol II pause early during the evolution of multicellular organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212077 | PMC |
http://dx.doi.org/10.1007/s12038-019-9979-y | DOI Listing |
J Hepatol
January 2025
Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917). Electronic address:
Background And Aims: Bulevirtide (BLV) 2 mg/day is EMA approved for treatment of compensated chronic hepatitis due to Delta virus (HDV) infection, however real-life data in large cohorts of patients with cirrhosis are lacking.
Methods: Consecutive HDV-infected patients with cirrhosis starting BLV 2 mg/day since September 2019 were included in a European retrospective multicenter real-life study (SAVE-D). Patient characteristics before and during BLV treatment were collected.
Proc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFCells
January 2025
Biotech Research and Innovation Center (BRIC), University of Copenhagen, Ole Maaløes Vej5, 2200 Copenhagen, Denmark.
Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a dominant negative function on nuclear F-actin, an even shorter truncation mutant found in melanoma (R128*) strongly promoted nuclear actin polymerization.
View Article and Find Full Text PDFNat Commun
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, PR China.
Hyperactivation of ribosome biogenesis (RiBi) drives cancer progression, yet the role of RiBi-associated proteins (RiBPs) in breast cancer (BC) is underexplored. In this study, we perform a comprehensive multi-omics analysis and reveal that assembly and maturation factors (AMFs), a subclass of RiBPs, are upregulated at both RNA and protein levels in BC, correlating with poor patient outcomes. In contrast, ribosomal proteins (RPs) do not show systematic upregulation across various cancers, including BC.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!