The Effects of Different Catalysts, Substituted Aromatic Aldehydes on One-Pot Three-Component Biginelli Reaction.

Curr Org Synth

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.

Published: March 2020

Aim And Objective: The Biginelli reaction, first reported in 1893, is one great example of the important multicomponent reactions reported from 1893. Under the same conditions, the influence of the common catalysts on the yield of the Biginelli reaction was investigated.

Materials And Method: To a round-bottom flask equipped with a spherical condenser were added 1,3- dicarbonyl compound (1.0 eq), urea (1.45 eq), aromatic aldehyde (1.0 eq), catalyst and methanol. The mixture was heated at reflux for 16 h. After cooling off, the mixture was filtered and washed with cold methanol to give DHPMs. Reaction solution was further purified by recrystallization with petroleum ether and ethyl acetate. Six catalytic systems, different 1,3-dicarbonyl compounds and different substituted aromatic aldehydes with varied substitutions are described for the Biginelli reaction. An analysis was also performed to study the factors that affect the yield of the reaction.

Results: When 1,3-dicarbonyl compound was ethyl acetoacetate, the CuCl/ conc.H2SO4 system gave the highest yield (90.5%). While when acetoacetamide was used, the yields of DHPMs in presence of PTSA/conc. HCl, conc. HCl or FeCl3•6H2O were all over 90%. Nine DHPMs with different substituents were obtained.

Conclusion: The Lewis acid or mixed catalyst had no significant advantage over a single protonic acid as catalyst. Conc. HCl as the catalyst was found to be the most effective condition for the preparation of DHPMs. The aromatic aldehyde with weak electron-withdrawing substituent such as Br resulted in the best yield.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570179416666181122100405DOI Listing

Publication Analysis

Top Keywords

biginelli reaction
16
substituted aromatic
8
aromatic aldehydes
8
reported 1893
8
aromatic aldehyde
8
conc hcl
8
reaction
5
effects catalysts
4
catalysts substituted
4
aromatic
4

Similar Publications

3,4-Dihydropyrimidin-2(1)-ones (DHPMs) and 1,4-dihydropyridines (DHPs), prepared by applying the Biginelli and Hantzsch reaction protocols, respectively, are well-documented nitrogen-containing heterocycles with intriguing pharmacological properties. The aqueous solution of biogenic carboxylic acids renewably produced from biomass catalytic or enzymatic processes can be used as a sustainable catalyst and green reaction media for synthesizing DHPs and DHPMs. This work evaluates the efficacy of various biogenic acids in their aqueous solutions as catalysts for synthesizing DHPs and DHPMs from substituted benzaldehydes.

View Article and Find Full Text PDF
Article Synopsis
  • - A series of dihydropyrimidine compounds were created as inhibitors of tyrosine kinases through a one-pot Biginelli reaction, yielding a variety of 1,4-DHPM hybrids by alkylating with different chloroacetylamine derivatives.
  • - These synthesized compounds were tested for their ability to inhibit cancer cell growth in different cell lines (HCT-116, PC-3, MCF-7) and showed that compounds 8h and 8i were the most effective, with low concentrations needed to inhibit cancer cells while being more selective towards normal cells.
  • - Further analysis revealed that compound 8h was particularly potent in inhibiting key kinases (EGFR and Trk
View Article and Find Full Text PDF

The paper describes the construction of a new series of pyrimidinone-linked thiazole derivatives through bromination of the initial Biginelli reaction product followed by the Hantzsch thiazole synthesis route. Various analytical techniques, including FT-IR, H NMR, C NMR, and LCMS analysis, were employed to confirm the formation of the products. The synthesized compounds were primarily evaluated for their antibacterial activity, with a specific focus on their IC values.

View Article and Find Full Text PDF

Chlorine containing tetrahydropyrimidines: Synthesis, characterization, anticancer activity and mechanism of action.

Bioorg Chem

December 2024

Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Kragujevac 34000, Serbia. Electronic address:

The aim of the presented research was to explore anticancer potential of eleven newly synthesized tetrahydropyrimidine derivatives. The compounds were synthesized via Biginelli multicomponent one-pot reaction using different derivatives of vanillin, ethyl 4-chloroacetoacetate and (N-methyl)urea. The cytotoxic effects of the compounds were examined on three human malignant cell lines (HeLa, K562, and MCF7), and normal lung fibroblasts MRC-5.

View Article and Find Full Text PDF

Since Strecker's discovery of multicomponent reactions (MCRs) in 1850, the strategy of applying an MCR approach has been in use for over a century. Due to their ability to quickly develop molecular diversity and structural complexity of interest, MCRs are considered an efficient approach in organic synthesis. Although MCRs such as the Ugi, Passerini, Biginelli, and Hantzsch reactions are widely studied, this review emphasizes the significance of selective MCRs to elegantly produce organic compounds of potential use in medicinal chemistry and industrial and material science applications, as well as the use of the MCR approach to sustainable methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!