Nonradiative decay pathways associated with vibronically coupled S (ππ*)-S (nπ*) potential energy surfaces of 3- and 5-hydroxychromones are investigated by employing the linear vibronic coupling approach. The presence of a conical intersection close to the Franck-Condon point is identified based on the critical examination of computed energetics and structural parameters of stationary points. We show that very minimal displacements of relevant atoms of intramolecular proton transfer geometry are adequate to drive the molecule toward the conical intersection nuclear configuration. The evolving wavepacket on S (ππ*) bifurcates at the conical intersection: a part of the wavepacket moves to S (nπ*) within a few femtoseconds while the other decays to S minimum. Our findings indicate the possibility of forming the proton transfer tautomer product via S (nπ*), competing with the traditional pathway occurring on S (ππ*).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.26152DOI Listing

Publication Analysis

Top Keywords

conical intersection
16
proton transfer
12
intramolecular proton
8
excited-state intramolecular
4
transfer driven
4
conical
4
driven conical
4
intersection
4
intersection hydroxychromones
4
hydroxychromones nonradiative
4

Similar Publications

In this study, the radiative and nonradiative decay pathways from the first singlet excited states (denoted as S) of three bithiophene-fused isoquinolines were investigated by using the mixed-reference spin-flip time-dependent density functional theory approach. These isoquinolines, which are prepared via [2 + 2 + 2] cycloaddition reactions between three types of bithiophene-linked diynes and nitriles, exhibit different fluorescence quantum yields in response to the positions of their sulfur atoms. The decay processes, including the fluorescence emission and internal conversion, were considered.

View Article and Find Full Text PDF

Coupled cluster theory in the standard formulation is unable to correctly describe conical intersections among states of the same symmetry. This limitation has restricted the practical application of an otherwise highly accurate electronic structure model, particularly in nonadiabatic dynamics. Recently, the intersection problem among the excited states was fully characterized and resolved.

View Article and Find Full Text PDF

Minimum energy conical intersections can be used to rationalize photochemical processes. In this Letter, we examine an algorithm to locate these structures that does not require the evaluation of nonadiabatic coupling vectors, showing that it minimizes the energy on hypersurfaces that envelop the intersection seam. By constraining the states to be separated by a small non-zero energy difference, the algorithm ensures that numerical artifacts and convergence problems of coupled cluster theory at conical intersections are not encountered during the optimization.

View Article and Find Full Text PDF

Impact of Dipole Self-Energy on Cavity-Induced Nonadiabatic Dynamics.

J Chem Theory Comput

January 2025

Department of Theoretical Physics, University of Debrecen, P.O. Box 400, Debrecen H-4002, Hungary.

The coupling of matter to the quantized electromagnetic field of a plasmonic or optical cavity can be harnessed to modify and control chemical and physical properties of molecules. In optical cavities, a term known as the dipole self-energy (DSE) appears in the Hamiltonian to ensure gauge invariance. The aim of this work is twofold.

View Article and Find Full Text PDF

ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!