A method is described for the determination of microRNAs via two-stage signal enhancement. This is attained by combining hairpin (HP) assisted cascade isothermal amplification with light-up DNA-Ag nanoclusters. A rationally designed dual-functional HP is used, and microRNA-21 is chosen as a model analyte. At the first stage, upon the hybridization of the microRNA-21 with HP, microRNA recycling via polymerase-displacement reaction and a circulative nicking-replication process are achieved. This generates numerous G-abundant overhang DNA sequences. In the second stage, the above-released G-abundant overhang DNA sequences hybridize with the dark green Ag NCs, and this results in the appearance of bright red fluorescence. Thanks to the two signal enhancement processes, a linear dependence between the fluorescence intensity at 616 nm and the concentration of microRNA-21 is obtained in the range from 1 pM to 20 pM with a detection limit of 0.7 pM. The strategy clearly discriminates between perfectly-matched and mismatched targets. The method was applied to the determination of microRNA-21 in a spiked serum sample. Graphical abstractSchematic representation of microRNA detection by integrating hairpin assisted cascade isothermal amplification with light-up DNA Ag nanoclusters. With microRNA, G-abundant overhang DNA sequences from amplification reaction hybridize with dark green Ag nanoclusters to produce a concentration-dependent bright red fluorescence.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-019-4094-1DOI Listing

Publication Analysis

Top Keywords

signal enhancement
12
hairpin assisted
12
assisted cascade
12
cascade isothermal
12
isothermal amplification
12
amplification light-up
12
g-abundant overhang
12
overhang dna
12
dna sequences
12
two-stage signal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!